
Statistics 531/Econ 677, Winter 2009

We investigate the monthly number mumps cases reported in New York City, from January 1928
to June 1972. During this period, before the introduction of a vaccine, mumps was a common
childhood disease to which almost all children were exposed. Because mumps displays a character-
istic rash it is fairly easily diagnosed. Mumps is a reportable disease, meaning that doctors have a
legal obligation to report any cases they encounter. This dataset therefore gives an opportunity to
study disease transmission and maybe learn lessons relevant to diseases of current concern such as
bird flu, SARS or HIV/AIDS. The data, which we shall denote by {xt, t = 1, 2, . . .}, are graphed
in Fig. 1.
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Figure 1: Monthly mumps reports, xt, in New York City from January 1928 to June 1972.

Section A. Spectral analysis. We seek to interpret the estimated spectum in Fig. 2 and in
particular the features labeled (1) through (5).
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Figure 2: An estimated spectral density for xt, calculated via spectrum(x,spans=c(3,5,7)).

A1. [2 points] What are the units of frequency in Fig. 2? Explain how you reach your answer.

ANSWER: Spectra are usually plotted up to the Nyquist frequency of 0.5 cycles/observation, which
corresponds to 6 cycles/year for monthly data. The labe on the x-axis thus suggests that units are
cycles/year. The large peak at frequency 1 confirms this, since we see from the data that there is a
dominant anual cycle (e.g. ten peaks between 1940 and 1950).

A2. [3 points] One might expect mumps to have annual seasonality. One might also expect
mumps to have long term cycles as the population of suscpetible children (those without immunity)
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replenishes after previous outbreaks. Discuss the interpretation of the 5 spectral peaks labeled (1)
through (5) in Fig. 2. You do not have to discuss here whether these peaks are statistically
significant, which is question A3 below.

ANSWER: (1) is low frequency variation, or trend. (2) is at ≈ 1/3 cycles/year; these 3 year
cycles could correspond to the replenishment of susceptible children suggested in the question. (3)
is an annual cycle. (4) is at ≈ 1.3 cycles/year (period of ≈ 0.8yr) which is hard to interpret but
could be a harmonic of (2). The 2 cycles/year peak in (5) is a seasonal effect—i.e., a harmonic of
(3)—indicating that the seasonal oscillations are not sinusoidal; this might match the suggestion of
slight double peaks in many of the epidemics.

A3. [2 points] Comment on the statistical significance of these five peaks. You are not expected to
present formal tests, but you should say what your opinion is and why.

ANSWER: Moving the crossbar to each point along the estimated spectrum gives pointwise 95%
confidence intervals. (3) is clearly significant. Most people felt that the confidence intervals for
(1,2,4,5) also did not include the base of the peak, indicating significance. Borderline cases cannot
be definitively answered by such an informal test.

Section B. ARIMA analysis. We try fitting an ARIMA(3, 0, 0) × (0, 1, 1)12 model. Call this
model M1. The output from M1=arima(x,order=c(3,0,0),seasonal=c(0,1,1)) is

ar1 ar2 ar3 sma1

1.2032 -0.3025 -0.0632 -0.8841

s.e. 0.0439 0.0674 0.0442 0.0231

sigma^2 estimated as 12881: log likelihood = -3220.76, aic = 6451.51

Another possibility is to model log(xt), again using ARIMA(3, 0, 0) × (0, 1, 1)12. Call this model
M2. The output from M2=arima(log(x),order=c(3,0,0),seasonal=c(0,1,1)) is

ar1 ar2 ar3 sma1

0.9197 0.1577 -0.1710 -0.8080

s.e. 0.0434 0.0592 0.0438 0.0285

sigma^2 estimated as 0.03632: log likelihood = 117.48, aic = -224.96

B1. [2 points] Can the above analysis determine whether a log transformation is appropriate?
Explain.

ANSWER: No. AIC values cannot be used to compare transformations of the data. Similarly σ2

values are not comparable. With extra care, likelihoods can be transformed to be comparable.

A table comparing AIC values for various ARIMA(i, 0, j) × (0, 1, 1)12 models for log(xt) is given
below:

AR \ MA 0 1 2 3 4
0 NA 312.7628 92.7453 -42.91403 -131.8598
1 -213.9453 -211.9458 -224.4315 -227.35447 -225.5215
2 -211.9459 -212.5350 -236.8260 -223.70594 -224.7305
3 -224.9618 -237.9834 -236.1537 -234.41349 -232.4061
4 -229.8224 -221.1222 -236.4941 -235.21621 -239.7320

B2. [2 points] The software gave no error messages while computing this table. Is there any reason
to suspect that the numeric maximization of the likelihood is less than adequate?
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ANSWER: Yes. Adding 1 parameter can only increase AIC by 2. Compare ARMA(3,1) with
ARMA(4,1) and see this is violated. Note that, under the reasonable assumption that likelihood
evaluation is adequate, the problem in this case appears to be with the maximization of ARMA(4,1)
and should not necessarily discourage the selection of ARMA(3,1).

B3. [4 points] Discuss briefly what you learn from the AIC table shown, in terms of developing a
suitable model for these data. Explain briefly why AIC may not be the only criterion considered
when selecting a model, and list some other analyses that you would carry out to determine and
defent a choice of model.

ANSWER: AIC favors ARMA(3,1) and ARMA(4,4). The latter is a large model, and is on the
boundary of those considered in the table, so is not a good choice. One could penalize the likelihood
differently, e.g. using BIC. Simplicity may be particularly valuable if we want to interpret param-
eters. Redundant models (or close to redundant) are undesirable, whatever the AIC. If normality
is seriously violated, AIC may be untrustworthy. Similarly if there are problems with numeric
maximization of the likelihood, as diagnosed in B2 above.

Section C. Diagnostic analysis. Fig. 3 contains six diagnostic plots, three for each of models
M1 and M2.

C1. [2 points] Explain carefully the meaning of the dashed line in sample ACF plots produced by
R, for example in Fig. 3(a1). [Here, you are asked to explain the statistical method; later parts will
ask you to interpret the results in the context of the data and models under investigation.]

ANSWER: If the data were Gaussian white noise then ACF at each lag would fall between the
dotted lines with probability 95%. This is often summarized (with some abuse of terminology) by
saying that the dotted lines are a 95% confidence interval for Gaussian white noise.

C2. [2 points] Compare (a1) and (b1) in Fig. 3. What does this tell you about models M1 and M2?

ANSWER: Both indicate mild deviation from white noise.

C3. [2 points] Compare (a2) and (b2) in Fig. 3. What does this tell you about models M1 and M2?

ANSWER: (a2) shows long tails, at both ends. (b) shows less deviation from normality, though still
a long left tail.

C4. [2 points] Compare (a3) and (b3) in Fig. 3. What does this tell you about models M1 and
M2? In particular, what do you learn about the appropriateness of an assumption that the white
noise process driving the ARIMA model is independent and identically distributed?

ANSWER: (a3) shows that the residuals with large absolute value for M1 occur periodically. This
is a deviation from the Gaussian white noise hypothesis, for which the absolute values are also
uncorrelated. (b3) is consistent with Gaussian white noise.
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Figure 3: Some diagnostic plots. (a1) and (a3) show the sample ACF for the residuals and absolute
values of the residuals respectively for model M1. (a2) is a normal quantile plot of the residuals for
M1. (b1,b2,b3) are the equivalent diagnostic plots for M2.
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