
Introduction to time series analysis

Objectives for this chapter

1. Discuss some basic motivations for the topic of time series analysis.

2. Introduce some fundamental concepts for time series analysis: stationarity,
autocorrelation, autoregressive models, moving average models,
autoregressive-moving average (ARMA) models, state-space models. These
will be covered in more detail later.



1.1 Overview

Time series data are, simply, data collected at many different times.

This is a common type of data! Observations at similar time points are often
more similar than more distant observations.

This immediately forces us to think beyond the independent, identically
distributed assumptions fundamental to much basic statistical theory and
practice.

Time series dependence is an introduction to more complicated dependence
structures: space, space/time, networks (social/economic/communication),
…



1.2 Looking for trends and relationships in
dependent data

The first half of this course focuses on:

1. Quantifying dependence in time series data.

2. Finding statistical arguments for the presence or absence of associations
that are valid in situations with dependence.

Example questions: Does Michigan show evidence for global warming? Does
Michigan follow global trends, or is there evidence for regional variation? What is a
good prediction interval for weather in the next year or two?



1.3 Modeling and statistical inference for
dynamic systems

The second half of this course focuses on:

1. Building models for dynamic systems, which may or may not be linear
and Gaussian.

2. Using time series data to carry out statistical inference on these models.

Example questions: Can we develop a better model for understanding variability of
financial markets (known in finance as volatility)? How do we assess our model and
decide whether it is indeed an improvement?



1.4 A simple example: Winter in Michigan
The previous winter was mild by Michigan standards. What should we expect this
year? Is there a noticeable trend? Let’s look at some data.

I downloaded from www.usclimatedata.com and put in ann_arbor_weather.csv.

You can get this file from the course website (ionides.github.io/531w20).

Better, you can set up a local git repository that will give you an up-to-date
copy of all the data, notes, code, homeworks and solutions for this course.
See Homework 0.

y <- read.table(file="ann_arbor_weather.csv",header=1)

https://www.usclimatedata.com/climate/ann-arbor/michigan/united-states/usmi0028
file:///home/ionides/531w20/01/ann_arbor_weather.csv
http://ionides.github.io/531w20


1.5 Rmarkdown
Here, we use Rmarkdown to combine source code with text. This gives a nice way
to generate statistical analysis that is

1. Reproducible,

2. Easily modified or extended.

These two properties are useful for developing your own statistical research
projects. Also, they are useful for teaching and learning statistical methodology,
since they make it easy for you to replicate and adapt analysis presented in class.

1.5.1 Question: How many of you already know Rmarkdown?



To get a first look at our dataset, str summarizes its structure:

str(y)

## 'data.frame':    120 obs. of  12 variables: 

##  $ Year     : int  1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 ... 

##  $ Low      : num  -7 -7 -4 -7 -11 -3 11 -8 -8 -1 ... 

##  $ High     : num  50 48 41 50 38 47 62 61 42 61 ... 

##  $ Hi_min   : num  36 37 27 36 31 32 53 38 32 50 ... 

##  $ Lo_max   : num  12 20 11 12 6 14 20 11 15 13 ... 

##  $ Avg_min  : num  18 17 15 15.1 8.2 10.9 25.8 17.2 17.6 20 ... 

##  $ Avg_max  : num  34.7 31.8 30.4 29.6 22.9 25.9 38.8 31.8 28.9 34.7 ... 

##  $ Mean     : num  26.3 24.4 22.7 22.4 15.3 18.4 32.3 24.5 23.2 27.4 ... 

##  $ Precip   : num  1.06 1.45 0.6 1.27 2.51 1.64 1.91 4.68 1.06 2.5 ... 

##  $ Snow     : num  4 10.1 6 7.3 11 7.9 3.6 16.1 4.3 8.7 ... 

##  $ Hi_Pricip: num  0.28 0.4 0.25 0.4 0.67 0.84 0.43 1.27 0.63 1.27 ... 

##  $ Hi_Snow  : num  1.1 3.2 2.5 3.2 2.1 2.5 2 5 1.3 7 ...

We focus on Low, which is the lowest temperature, in Fahrenheit, for January.

Climate change: have polar vortex events recently brought unusually cold
weather?

Agriculture: can I grow ginseng in Ann Arbor?

Energy: assess the cost-effectiveness of installing extra home insulation.



As statisticians, we want an uncertainty estimate. We want to know how
reliable our estimate is, since it is based on only a limited amount of data.

The data are , which we also write as .

Basic estimates of the mean and standard deviation are

This suggests an approximate confidence interval for  of 
.
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1955 has missing data, coded as NA, requiring a minor modification. So, we
compute  and  as

mu1 <- mean(y$Low,na.rm=TRUE) 

se1 <- sd(y$Low,na.rm=TRUE)/sqrt(sum(!is.na(y$Low))) 

cat("mu1 =", mu1, ",  se1 =", se1, "\n")

## mu1 = -2.932773 ,  se1 = 0.6813215

1.8.1 Question: What are the assumptions behind the resulting
confidence interval, .

1.8.2 Question: When, in practice, is it reasonable to present this
confidence interval? Is it reasonable here?

1.8.3 Question: How would you proceed?

μ̂1 = /SE1 σ̂1 N
−−√

−2.93 ± 1.34



1.9 Some data analysis
The first rule of data analysis is to plot the data in as many ways as you can think
of! For time series, we usually start with a time plot

plot(Low~Year,data=y,ty="l")



1.10 ARMA models
Another basic thing to do is to fit an autoregressive-moving average (ARMA)
model. We’ll look at ARMA models in much more detail later in the course. Let’s fit
an ARMA model given by

This has a one-lag autoregressive term, , and a one-lag moving
average term, . It is therefore called an ARMA(1,1) model. These lags give
the model some time dependence.

If , we get back to the basic independent model, .

If  we have a moving average model with one lag, MA(1).

If , we have an autoregressive model with one lag, AR(1).

We model  to be an independent, identically distributed sequence. To be
concrete, let’s specify a model where they are normally distributed with mean zero
and variance .

= μ + α( − μ) + + β .Yn Yn−1 ϵn ϵn−1

α( − μ)Yn−1
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1.11 A note on notation:

In this course, capital Roman letters, e.g., , , , denote random
variables. We may also use , , ,  for random noise processes. Thus,
these symbols are used to build models.

We use lower case Roman letters ( , , , ) to denote numbers. These
are not random variables. Often,  will denote a data point.

“We must be careful not to confuse data with the abstractions we use to
analyze them.” (William James, 1842-1910).

Other Greek letters will usually be parameters, i.e., real numbers that form
part of the model.

X Y Z
ϵ η ξ ζ

x y z …
y



1.12 Maximum likelihood
We can readily fit the ARMA(1,1) model by maximum likelihood,

arma11 <- arima(y$Low, order=c(1,0,1))

We can see a summary of the fitted model, where  is called ar1,  is called ma1,
and  is called intercept.

arma11

##  

## Call: 

## arima(x = y$Low, order = c(1, 0, 1)) 

##  

## Coefficients: 

##          ar1      ma1  intercept 

##       0.7852  -0.7414    -2.9680 

## s.e.  0.3184   0.3429     0.8115 

##  

## sigma^2 estimated as 54.52:  log likelihood = -406.77,  aic = 821.55

We will write the ARMA(1,1) estimate of  as , and its standard error as .

α β
μ

μ μ̂2 SE2



1.13 Investigating R objects
Some poking around is required to extract the quantities of primary interest from the
fitted ARMA model in R.

names(arma11)

##  [1] "coef"      "sigma2"    "var.coef"  "mask"      "loglik"    

##  [6] "aic"       "arma"      "residuals" "call"      "series"    

## [11] "code"      "n.cond"    "nobs"      "model"

mu2 <- arma11$coef["intercept"] 

se2 <- sqrt(arma11$var.coef["intercept","intercept"]) 

cat("mu2 =", mu2, ",  se2 =", se2, "\n")

## mu2 = -2.96805 ,  se2 = 0.8115071



1.14 Comparing the iid estimate with the
ARMA estimate

We see that the two estimates,  and , are close.

However,  is an underestimate of error, compared to the better
estimate .

The naive standard error needs to be inflated by 
19.1 percent.

Exactly how the ARMA(1,1) model is fitted and the standard errors computed will be
covered later.

1.14.1 Question: How do we know if the ARMA analysis is more
trustworthy?

= −2.93μ̂1 = −2.97μ̂2

= 0.68SE1

= 0.81SE2
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1.15 Model diagnostic analysis
We should do diagnostic analysis. The first thing to do is to look at the
residuals. For an ARMA model, the residual  at time  is defined to be the
difference between the data, , and a one-step ahead prediction of  based on

, written as . From the ARMA(1,1) definition,

a basic one-step-ahead predicted value corresponding to parameter estimates 
and  could be

A so-called residual time series, , is then given by

In fact, R does something slightly more sophisticated.
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plot(arma11$resid)

We see some slow variation in the residuals, over a decadal time scale. However,
the residuals  are close to uncorrelated. We see this by plotting their pairwise
sample correlations at a range of lags. This is the sample autocorrelation
function, or sample ACF, written for each lag  as
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acf(arma11$resid,na.action=na.pass)

This shows no substantial autocorrelation. An ARMA model may not be a good way
to describe the slow variation present in the residuals of the ARMA(1,1) model.

This is a toy example. However, inadequate models giving poor statistical
uncertainty estimates is a real concern when working with time series data.



1.18 Quantifying uncertainty for scientific
reproducibility

Usually, omitted dependency in the model will give overconfident (too small)
standard errors.

This leads to scientific reproducibility problems, where chance variation is too
often assigned statistical significance.

It can also lead to improper pricing of risk in financial markets, a factor in the
US financial crisis of 2007-2008.



1.19 Models dynamic systems: State-space
models

Scientists and engineers often have equations in mind to describe a system they’re
interested in. Often, we have a model for how the state of a stochastic dynamic
system evolves through time, and another model for how imperfect measurements
on this system gives rise to a time series of observations.

This is called a state-space model. The state models the quantities that we think
determine how the system changes with time. However, these idealized state
variables are not usually directly and perfectly measurable.

Statistical analysis of time series data on a system should be able to

1. Help scientists choose between rival hypotheses.

2. Estimate unknown parameters in the model equations.

We will look at examples from a wide range of scientific applications. The dynamic
model may be linear or nonlinear, Gaussian or non-Gaussian.



1.20 A finance example: fitting a model for
volatility of a stock market index

Let  be the daily returns on a stock market index, such
as the S&P 500.

Since the stock market is notoriously unpredictable, it is often unproductive
to predict the mean of the returns and instead there is much emphasis on
predicting the variability of the returns, known as the volatility.

Volatility is critical to assessing the risk of financial investments.

{ , n = 1, … , N}yn



Financial mathematicians have postulated the following model. We do not need to
understand it in detail right now. The point is that investigators find it useful to
develop models for how dynamic systems progress through time, and this gives rise
to the time series analysis goals of estimating unknown parameters and assessing
how successfully the fitted model describes the data.

 is iid ,  is iid ,  is iid .

 is unobserved volatility at time . We only observe the return, .

 has auto-regressive behavior and dependence on  and a slowly
varying process .

Yn

Hn

= exp{ } , = + ,
Hn

2
ϵn Gn Gn−1 νn

= (1 − ϕ) + ϕμh Hn−1

+ tanh( + ) exp{ } + .Yn−1ση 1 − ϕ2
− −−−−

√ Gn−1 νn

−Hn−1

2
ωn

{ }ϵn N(0, 1) { }νn N(0, )σ2
ν { }ωn N(0, )σ2

ω

Hn tn Yn

Hn Yn−1

Gn



1.22 Questions to be addressed later in the
course

This is an example of a mechanistic model, where scientific or engineering
considerations lead to a model of interest. Now there is data and a model of
interest, it is time to recruit a statistician!

1. How can we get good estimates of the parameters, , , , ,
together with their uncertainties?

2. Does this model fit better than alternative models? So far as it does, what
have we learned?

3. Does the data analysis suggest new models, or the collection of new
data?

Likelihood-based inference for this partially observed stochastic dynamic system is
possible, and enables addressing these questions (Bretó 2014). Carrying out such
an analysis is facilitated by modern algorithms (Ionides et al. 2015). The R package
system and Rmarkdown make state-of-the-art statistical analysis reproducible and
extendable by Masters level statisticians.

μh ϕ σν σω
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