
Chapter 2. Time series models, trend and autocovariance

Objectives

1 Set up general notation for working with time series data and time
series models.

2 Define the trend function for a time series model, and discuss its
estimation from data.

3 Discuss the properties of least square estimation of the trend.

4 Define the autocovariance and autocorrelation functions and their
standard estimators.

Definition: Time series data and time series models

A time series is a sequence of numbers, called data. In general, we
will suppose that there are N numbers, y1, y2, . . . , yN , collected at an
increasing sequence of times, t1, t2, . . . , tN .

We write 1 :N for the sequence {1, 2, . . . , N} and we write the
collection of numbers {yn, n = 1, . . . , N} as y1:N .

We keep t to represent continuous time, and n to represent the
discrete sequence of observations. This will serve us well later, when
we fit continuous time models to data.

A time series model is a collection of jointly defined random variables,
Y1, Y2, . . . , YN .

We write this collection of random variables as Y1:N .

Like all jointly defined random variables, the distribution of Y1:N is
defined by a joint density function, which we write as

fY1:N
(y1, . . . , yN | θ).

Here, θ is a vector of parameters.

Our notation for densities generalizes. We write fY (y) for the density
of a random variable Y evaluated at y, and fY Z(y, z) for the joint
density of the pair of random variables (Y,Z) evaluated at (y, z). We
can also write fY |Z(y|z) for the conditional density of Y given Z.

For discrete data, such as count data, our model may also be discrete
and we interpret the density function as a probability mass function.
Expectations and probabilities are integrals for continuous models,
and sums for discrete models. Otherwise, everything remains the
same. We will write formulas only for the continuous case. You
should be able to swap integrals for sums, if necessary, to work with
discrete models.

Scientifically, we postulate that y1:N are a realization of Y1:N for
some unknown value of θ.

Review: Random variables

Question 2.1. What is a random variable?

Question 2.2. What is a collection of jointly defined random variables?

Question 2.3. What is a probability density function? What is a joint
density function? What is a conditional density function?

Question 2.4. What does it mean to say that “θ is a vector of
parameters?”

There are different answers to these questions, but you should be able to
write down an answer that you are satisfied with.

Review: Expectation

Random variables usually have an expected value, and in this course they
always do. We write E[X] for the expected value of a random variable X.

Question 2.5. Review question: What is expected value? How is it
defined? How can it fail to exist for a properly defined random variable?

Definition: The mean function, or trend

We define the mean function, for n ∈ 1 :N , by

µn = E[Yn] =

∫ ∞
−∞

yn fYn
(yn) dyn

We use the words “mean function” and “trend” interchangeably.

We say “function” since we are thinking of µn as a function of n.

Sometimes, it makes sense to think of time as continuous. Then, we
write µ(t) for the expected value of an observation at time t. We only
make observations at the discrete collection of times t1:N and so we
require µ(tn) = µn.

A time series may have measurements evenly spaced in time, but our
notation does not insist on this. In practice, time series data may
contain missing values or unequally spaced observations.

µn may depend on θ, the parameter vector. We can write µn(θ) to
make this explicit.

We write µ̂n(y1:N) to be some estimator of µn, i.e., a map which is
applied to the data to give an estimate of µn. An appropriate choice
of µ̂n will depend on the data and the model.

Usually, applied statistics courses do not distinguish between
estimators (functions that can be applied to any dataset) and
estimates (an estimator evaluated on the actual data). For thinking
about model specification and diagnosing model misspecification it is
helpful to bear this in mind.

For example, the estimate of the mean function is the value of the
estimator when applied to the data. Here, we write this as

µ̂n = µ̂n(y1:N).

We call µ̂n an estimated mean function or estimated trend.

For example, sometimes we suppose a model with µn = µ, so the
mean is assumed constant. In this case, the model is called mean
stationary. Then, we might estimate µ using the mean estimator,

µ̂(y1:N) =
1

N

N∑
k=1

yk.

We write µ̂ for µ̂(y1:N), the sample mean.

We can compute the sample mean, µ̂, for any dataset. It is only a
reasonable estimator of the mean function when a mean stationary
model is appropriate.

Notice that trend is a property of the model, and the estimated trend
is a function of the data.

Formally, we should not talk about the trend of the data. People do,
but we should try not to.

Similarly, data cannot be mean stationary. A model can be mean
stationary.

Question 2.6. Properties of models vs properties of data.

Consider these two statements. Does is matter which we use?

1 “The data look mean stationary.”

2 “A mean stationary model looks appropriate for these data.”

Definition: The autocovariance function

We will assume that variances and covariances exist for the random
variables Y1:N . We write

γm,n = E
[
(Ym − µm)(Yn − µn)

]
.

This is called the autocovariance function, viewed as a function of
m and n.
We may also write Γ for the matrix whose (m,n) entry is γm,n.
If the covariance between two observations depends only on their time
difference, the time series model is covariance stationary. For
observations equally spaced in time, the autocovariance function is
then a function of a lag, h,

γh = γn,n+h.

For a covariance stationary model, and some mean function estimator
µ̂n = µ̂n(y1:N), a common estimator for γh is

γ̂h(y1:N) =
1

N

N−h∑
n=1

(
yn − µ̂n

) (
yn+h − µ̂n+h

)
.

The corresponding estimate of γh, known as the sample
autocovariance function, is

γ̂h = γ̂h(y1:N).

Definition: The autocorrelation function

Dividing the autocovariance by the variance gives the
autocorrelation function ρh given by

ρh =
γh
γ0
.

We can analogously construct the standard autocorrelation estimator,

ρ̂h(y1:N) =
γ̂h(y1:N)

γ̂0(y1:N)
,

which leads to an estimate known as the sample autocorrelation,

ρ̂h = ρ̂h(y1:N) =
γ̂h
γ̂0
.

It is common to use ACF as an acronym for any or all of the
autocorrelation function, sample autocorrelation function,
autocovariance function, and sample autocovariance function. If you
use the acronym ACF, you are expected to define it, to remove
the ambiguity.

Sample statistics exist without a model

The sample autocorrelation and sample autocovariance functions are
statistics computed from the data. They exist, and can be computed,
even when the data are not well modeled as covariance stationary.
However, in that case, it does not make sense to view them as
estimators of the autocorrelation and autocovariance functions (which
exist as functions of a lag h only for covariance stationary models).

Formally, we should not talk about the correlation or covariance of
data. These are properties of models. We can talk about the sample
autocorrelation or sample autocovariance of data.

Estimating a trend by least squares

Let’s analyze a time series of global mean annual temperature downloaded
from climate.nasa.gov/system/internal_resources/details/

original/647_Global_Temperature_Data_File.txt. These data are
in degrees Celsius measured as an anomaly from a 1951-1980 base. This is
climatology jargon for saying that the sample mean of the temperature
over the interval 1951-1980 was subtracted from all time points.

global_temp <- read.table("Global_Temperature.txt",header=TRUE)

str(global_temp)

'data.frame': 137 obs. of 3 variables:

$ Year : int 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 ...

$ Annual : num -0.2 -0.12 -0.1 -0.21 -0.28 -0.32 -0.31 -0.33 -0.2 -0.12 ...

$ Moving5yrAverage: num -0.13 -0.16 -0.19 -0.21 -0.24 -0.26 -0.27 -0.27 -0.27 -0.26 ...

plot(Annual~Year,data=global_temp,ty="l")

climate.nasa.gov/system/internal_resources/details/original/647_Global_Temperature_Data_File.txt
climate.nasa.gov/system/internal_resources/details/original/647_Global_Temperature_Data_File.txt

Mean global temperature anomaly, degrees C

These data should make all of us pause for thought about the future
of our planet.

Understanding climate change involves understanding the complex
systems of physical, chemical and biological processes driving climate.

It is hard to know if gigantic models that attempt to capture all
important parts of the global climate processes are in fact a
reasonable description of what is happening.

There is value in relatively simple statistical analysis, which can at
least help to tell us what evidence there is for how things are, or are
not, changing.

Here is a quote from Science (18 December 2015, volume 350, page
1461; I’ve added some emphasis).

“Scientists are still debating whether—and, if so, how—warming in the
Arctic and dwindling sea ice influences extreme weather events at
midlatitudes. Model limitations, scarce data on the warming Arctic, and
the inherent variability of the systems make answers elusive.”

Fitting a least squares model with a quadratic trend

Perhaps the simplest trend model that makes sense looking at these data
is a quadratic trend,

µ(t) = β0 + β1t+ β2t
2.

To write the least squares estimate of β0, β1 and β2, we set up matrix
notation. Write

µ = (µ1, µ2, . . . , µN)
t

for the column vector describing the mean function, and similarly,

β = (β0, β1, β2)
t
.

Then, defining

Z =


1 1880 18802

1 1881 18812

1 1882 18822

...
...

...

 ,

we can write
µ = Zβ.

We write the data y1:N as a column vector,

y = (y1, y2, . . . , yN)
t
.

The ordinary least squares (OLS) estimator of β is

β̂OLS(y1:N) = (Z
t
Z)−1Z

t
y,

with corresponding OLS estimate

β̂ = β̂OLS(y1:N) = (Z
t
Z)−1Z

t
y.

We can carry out this computation in R by

lm_fit <- lm(Annual~Year+I(Year^2),data=global_temp)

where I() is a function that tells R to construct Year^2 as a variable, and
inhibits interpretation in the R model formula notation.

I()
Year^2

summary(lm_fit)

##

Call:

lm(formula = Annual ~ Year + I(Year^2), data = global_temp)

##

Residuals:

Min 1Q Median 3Q Max

-0.27092 -0.08638 0.00613 0.07481 0.38067

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.959e+02 2.681e+01 11.04 <2e-16 ***

Year -3.111e-01 2.753e-02 -11.30 <2e-16 ***

I(Year^2) 8.168e-05 7.067e-06 11.56 <2e-16 ***

Signif. codes:

0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 0.1157 on 134 degrees of freedom

Multiple R-squared: 0.8766,Adjusted R-squared: 0.8748

F-statistic: 476.1 on 2 and 134 DF, p-value: < 2.2e-16

We can check visually how well this model fits the data.

yr <- 1880:2026

Z <- cbind(1,yr,yr^2)

beta <- coef(lm_fit)

prediction <- Z%*%beta

plot(Annual~Year,data=global_temp,ty="l",xlim=range(yr),

ylim=range(c(global_temp$Annual,prediction),na.rm=TRUE),

lty="dashed")

lines(x=yr,y=prediction,col="red")

The overall estimated trend seems a reasonable fit for the data.

If we want to attach uncertainty to our parameter estimates, and
consequently to our forecast, we need a time series model Y1:N , which
we write in column vector form as

Y = (Y1, Y2, . . . , YN)
t
.

The usual model behind OLS is the independent error model, known
in time series analysis as the white noise error model:
[L1] Y = Zβ + ε,
where ε = ε1:N is a vector of independent, identically distributed
random variables with mean zero and constant variance,
E[εn] = 0, Var[εn] = σ2. Standard linear model software, such as
lm in R, provides confidence intervals based on this model.

Under model L1, the estimator β̂OLS(y1:N) is unbiased. This can be
checked:

E
[
β̂OLS(Y1:N)

]
= E

[
(Z

t
Z)−1Z

t
Y
]

= E
[
(Z

t
Z)−1Z

t{Zβ + ε}
]

= (Z
t
Z)−1Z

t{Zβ + E[ε]}
= (Z

t
Z)−1(Z

t
Z)β

= β

A result for linear models is that β̂OLS(y1:N) is the minimum variance
unbiased estimator for model L1.

lm
R

Variance/covariance for the white noise error model

The variance/covariance matrix of β̂OLS(Y1:N) under this model is

Cov[β̂OLS(Y1:N)] = σ2
(
Z

t
Z
)−1

,

which is estimated using an estimator for σ of

σ̂OLS(y1:N) =

√
1

N − d
(
y − Zβ̂OLS

)t(
y − Zβ̂OLS

)
,

where d is the number of covariates, i.e., the number of columns of Z.

Let’s look at the residuals to assess how appropriate this model is here.

acf(resid(lm_fit))

Context for Homework 1

The horizontal dashed lines on the graph of the sample
autocorrelation function (ACF) give a measure of chance variation
under the null hypothesis that the residuals are IID.

At each lag h, the chance that the estimated ACF falls within this
band is approximately 95

Thus, under the null hypothesis, one expects a fraction of 1/20 of the
lags of the sample ACF to fall outside this band.

Here, the sample ACF confirms what we can probably see from the
plot of the fitted model: the variation around the fitted model is
clustered in time, so the sample ACF of the residuals is not consistent
with a model having independent error terms.

Question 2.7. How does R construct these horizontal dashed lines?

Figuring out what R does

How would you check what R actually does when it constructs these
dashed lines? What approximation is being made? When is that
approximation appropriate?

Hint: If you type ‘acf‘ in R, you get the source code for the acf
function. You’ll see that the plotting is done by a service function
‘plot.acf‘. This service function is part of the package, and is not
immediately accessible to you. Nevertheless, you can check the source
code as follows

Notice, either from the help documentation ‘?acf‘ or the last line of
the source code ‘acf‘ that this function resides in the package ‘stats‘.

Now, you can access this namespace directly, to list the source code,
by

stats:::plot.acf

Homework 1 asks you to relate this source code to the task of testing
for lack of correlation, a standard topic in undergrad introductory
statistics courses. The critical line of code seems to be

clim0 <- if (with.ci) qnorm((1 + ci)/2)/sqrt(x$n.used)

This appears to use a normal distribution approximation for the
sample autocorrelation estimator, with mean zero and standard
deviation 1/

√
N .

Generalized least squares

Suppose for the moment that we knew the covariance matrix, Γ, for a
model with dependent errors,
[L2] Y = Zβ + ζ, ζ ∼ N [0,Γ].
We read “ζ ∼ N [0,Γ]” as “ζ follows a multivariate normal
distribution with mean zero and covariance matrix Γ.”

The minimum variance unbiased estimator of β for model L2 is the
generalized least square (GLS) estimator,

β̂GLS(y1:N) =
(
Z

t
Γ−1Z

)−1
Z

t
Γ−1y.

The OLS estimator remains unbiased for L2 (you can check this as an
exercise). In this sense it remains a reasonable estimator. It is often a
practical solution to use the OLS estimator, expecially for preliminary
data analysis. We don’t know Γ so can’t necessarily make a good
estimator based on the GLS model. It might be easier to get an
estimate of Γ once we have a reasonable estimate of the trend.

For model L2, the variance of the OLS estimator is

Var
[
β̂OLS(Y1:N)

]
= (Z

t
Z)−1 Z

t
ΓZ (Z

t
Z)−1.

This is different from the variance under model L1.

CONCLUSION. It is okay to do ordinary linear regression for
data which are not well modeled with uncorrelated errors.
However, if we do so, we should not trust the error estimates
coming from L1.

This is an example of a situation where some parts of the output from
statistical software are reasonable (here, the parameter estimates from
lm) and other parts are unreasonable (the corresponding standard
errors and any tests based on them). The theory helps us decide
which bits of computer output to use and which to ignore.

lm

Acknowledgments and License

These notes build on previous versions at
ionides.github.io/531w16 and ionides.github.io/531w18.

Licensed under the Creative Commons attribution-noncommercial
license, http://creativecommons.org/licenses/by-nc/3.0/.
Please share and remix noncommercially, mentioning its origin.

ionides.github.io/531w16
ionides.github.io/531w18
http://creativecommons.org/licenses/by-nc/3.0/

