
Chapter 5. Parameter estimation and model identification
for ARMA models

Objectives

1 Develop likelihood-based inference in the context of ARMA models.

2 Discuss maximum likelihood parameter estimation and alternative
methods.

3 Investigate strategies for model selection, also known as model
identification, in the context of ARMA models.

4 Work on practical computational approaches for implementing these
methods.



Background on likelihood-based inference

For any data y1:N and any probabilistic model fY1:N (y1:N ; θ) we
define the likelihood function to be

L(θ) = fY1:N (y1:N ; θ).

It is often convenient to work with the logarithm to base e of the
likelihood, which we write as

`(θ) = logL(θ).

Using the likelihood function as a statistical tool is a very general
technique, widely used since Fisher (1922)
(wikipedia.org/wiki/Likelihood_function).

Time series analysis involves various situations where we can, with
sufficient care, compute the likelihood function and take advantage of
the general framework of likelihood-based inference.

wikipedia.org/wiki/Likelihood_function


Computation of the likelihood function for ARMA models is not
entirely straightforward.

Computationally efficient algorithms exist, using a state space model
representation of ARMA models that will be developed later in this
course.

For now, it is enough that software exists to evaluate and maximize
the likelihood function for a Gaussian ARMA model. Our immediate
task is to think about how to use that capability.



Before evaluation of the ARMA likelihood became routine, it was
popular to use a method of moments estimator called Yule-Walker
estimation. This is described by Shumway and Stoffer (Section 3.6)
but is nowadays mostly of historical interest.

There are occasionally time series situations where massively long
data or massively complex models mean that it is computationally
infeasible to work with the likelihood function. However, we are going
to focus on the common situation where we can (with due care) work
with the likelihood.

Likelihood-based inference (meaning statistical tools based on the
likelihood function) provides tools for parameter estimation, standard
errors, hypothesis tests and diagnosing model misspecification.

Likelihood-based inference often (but not always) has favorable
theoretical properties. Here, we are not especially concerned with the
underlying theory of likelihood-based inference. On any practical
problem, we can check the properties of a statistical procedure by
simulation experiments.



The maximum likelihood estimator (MLE)

A maximum likelihood estimator (MLE) is

θ̂(y1:N ) = arg max
θ
fY1:N (y1:N ; θ),

where arg maxθ g(θ) means a value of argument θ at which the
maximum of the function g is attained, so
g
(

arg maxθ g(θ)
)

= maxθ g(θ).

If there are many values of θ giving the same maximum value of the
likelihood, then an MLE still exists but is not unique.

The maximum likelihood estimate (also known as the MLE) is

θ̂ = θ̂(y1:N )

= arg max
θ
L(θ)

= arg max
θ
`(θ).



Question 5.1. Why are arg maxθ L(θ) and arg maxθ `(θ) the same?

We can write θ̂MLE to denote the MLE if we are considering various
alternative estimation methods. However, in this course, we will most
often be using maximum likelihood estimation so we let θ̂ correspond
to this approach.



Standard errors for the MLE

As statisticians, it would be irresponsible to present an estimate
without a measure of uncertainty!

Usually, this means obtaining a confidence interval, or an approximate
confidence interval.

It is good to say approximate when you present something that is not
exactly a confidence interval with the claimed coverage. For example,
remind yourself of the definition of a 95% confidence interval.

Saying “approximate” reminds you that there is some checking that
could be done to assess how accurate the approximation is in your
particular situation.

It also helps to remind you that it may be interesting and relevant to
explain why the interval you present is an approximate confidence
interval rather than an exact one.



Three ways to quantify statistical uncertainty in an MLE

1 Fisher information. This is computationally quick, but works well only
when θ̂(Y1:N ) is well approximated by a normal distribution.

2 Profile likelihood estimation. This is a bit more computational effort,
but generally is preferable to the Fisher information.

3 A simulation study, also known as a bootstrap.



A Simulation study, also called bootstrap

If done carefully and well, this can be the best approach.

A confidence interval is a claim about reproducibility. You claim, so
far as your model is correct, that on 95% of realizations from the
model, a 95% confidence interval you have constructed will cover the
true value of the parameter.

A simulation study can check this claim fairly directly, but requires
the most effort.

The simulation study takes time for you to develop and debug, time
for you to explain, and time for the reader to understand and check
what you have done. We usually carry out simulation studies to check
our main conclusions only.



Standard errors via the observed Fisher information

We suppose that θ ∈ RD and so we can write θ = θ1:D.

The Hessian matrix of a function is the matrix of its second partial
derivatives. We write the Hessian matrix of the log likelihood function
as ∇2`(θ), a D ×D matrix whose (i, j) element is[

∇2`(θ)
]
ij

=
∂2

∂θi∂θj
`(θ).

The observed Fisher information is

Î = −∇2`(θ̂).

A standard asymptotic approximation to the distribution of the MLE
for large N is

θ̂(Y1:N ) ≈ N
[
θ, [Î]−1

]
,

where θ is the true parameter value. This asserts that the MLE is
asymptotically unbiased, with variance asymptotically attaining the
Cramer-Rao lower bound.



Since the MLE attains the Cramer-Rao lower bound, under regularity
conditions, we it is asymptotically efficient.

We can interpret ≈ in the above normal approximation to mean “one
could write a limit statement formally justifying this approximation in
a suitable limit.” Almost equivalently, ≈ can mean “this
approximation is useful in the finite sample situation at hand.”

A corresponding approximate 95% confidence interval for θd is

θ̂d ± 1.96
[
Î−1
]1/2
dd

. The R function arima computes standard errors
for the MLE of an ARMA model in this way.

We usually only have one time series, with some fixed N , and so we
cannot in practice take N →∞. When our time series model is
non-stationary it may not even be clear what it would mean to take
N →∞. These asymptotic results should be viewed as nice
mathematical reasons to consider computing an MLE, but not a
substitute for checking how the MLE behaves for our model and data.

arima


Confidence intervals via the profile likelihood

We consider the problem of obtaining a confidence interval for θd, the
dth component of θ1:D.

The profile log likelihood function of θd is defined to be

`profile
d (θd) = max

φ∈RD:φd=θd
`(φ).

In general, the profile likelihood of one parameter is constructed by
maximizing the likelihood function over all other parameters.

Check that maxθd `
profile
d (θd) = maxθ1:D `(θ1:D). Maximizing the

profile likelihood `profile
d (θd) gives the MLE, θ̂d.

An approximate 95% confidence interval for θd is given by{
θd : `(θ̂)− `profile

d (θd) < 1.92
}
.

This is known as a profile likelihood confidence interval.



Where does the 1.92 cutoff come from

The cutoff 1.92 is derived using Wilks’s theorem, which we will
discuss in more detail when we develop likelihood ratio tests.

Note that 1.92 = 1.962

2 .

Although the asymptotic justification of Wilks’s theorem is the same
limit that justifies the Fisher information standard errors, profile
likelihood confidence intervals tend to work better than Fisher
information confidence intervals when N is not so large—particularly
when the log likelihood function is not close to quadratic near its
maximum.



Bootstrap methods for constructing standard errors and
confidence intervals

Suppose we want to know the statistical behavior of the estimator
θ̂(y1:N ) for models in a neighborhood of the MLE.

In particular, let’s consider the problem of estimating uncertainty
about θ1. We want to assess the behavior of the maximum likelihood
estimator, θ̂(y1:N ), and possibly the coverage of an associated
confidence interval estimator,

[
θ̂1,lo(y1:N ), θ̂1,hi(y1:N )

]
. The

confidence interval estimator could be constructed using either the
Fisher information method or the profile likelihood approach.

We can design a simulation study to address the following goals:

(A) Evaluate the coverage of a proposed confidence interval estimator,
[θ̂1,lo, θ̂1,hi],

(B) Construct a standard error for θ̂1,

(C) Construct a confidence interval for θ1 with exact local coverage.



A simulation study

1. Generate J independent Monte Carlo simulations,

Y
[j]

1:N ∼ fY1:N (y1:N ; θ̂) for j ∈ 1 : J.

2. For each simulation, evaluate the maximum likelihood estimator,

θ[j] = θ̂
(
Y

[j]
1:N

)
for j ∈ 1 : J,

and, if desired, the confidence interval estimator,[
θ

[j]
1,lo, θ

[j]
1,hi

]
=
[
θ̂1,lo(Y

[j]
1:N ), θ̂1,hi(Y

[j]
1:N )

]
.

3. For large J , the coverage of the proposed confidence interval is well
approximated, for models in a neighborhood of θ̂, by the proportion of the

intervals
[
θ

[j]
1,lo, θ

[j]
1,hi

]
that include θ̂1.

4. The sample standard deviation of {θ[j]
1 , j ∈ 1 : J} is a natural standard

error to associate with θ̂1.



Likelihood ratio tests for nested hypotheses

The whole parameter space on which the model is defined is Θ ⊂ RD.

Suppose we have two nested hypotheses

H〈0〉 : θ ∈ Θ〈0〉,

H〈1〉 : θ ∈ Θ〈1〉,

defined via two nested parameter subspaces, Θ〈0〉 ⊂ Θ〈1〉, with
respective dimensions D〈0〉 < D〈1〉 ≤ D.

We consider the log likelihood maximized over each of the hypotheses,

`〈0〉 = sup
θ∈Θ〈0〉

`(θ),

`〈1〉 = sup
θ∈Θ〈1〉

`(θ).



A useful approximation asserts that, under the hypothesis H〈0〉,

`〈1〉 − `〈0〉 ≈ (1/2)χ2
D〈1〉−D〈0〉 ,

where χ2
d is a chi-squared random variable on d degrees of freedom

and ≈ means ”is approximately distributed as.”

We will call this the Wilks approximation.

The Wilks approximation can be used to construct a hypothesis test
of the null hypothesis H〈0〉 against the alternative H〈1〉.

This is called a likelihood ratio test since a difference of log
likelihoods corresponds to a ratio of likelihoods.

When the data are IID, N →∞, and the hypotheses satisfy suitable
regularity conditions, this approximation can be derived
mathematically and is known as Wilks’s theorem.

The chi-squared approximation to the likelihood ratio statistic may be
useful, and can be assessed empirically by a simulation study, even in
situations that do not formally satisfy any known theorem.



Using a likelihood ratio test to construct profile likelihood
confidence intervals

Recall the duality between hypothesis tests and confidence intervals:

The estimated parameter θ does not lead us to reject a null
hypothesis of θ = θ〈0〉 at the 5% level

m
θ〈0〉 is in a 95% confidence interval for θ.

We can check what the 95% cutoff is for a chi-squared distribution
with one degree of freedom,

qchisq(0.95,df=1)

## [1] 3.841459

We can now see how the Wilks approximation suggests a confidence
interval constructed from parameter values having a profile likelihood
within 1.92 log units of the maximum.



Akaike’s information criterion (AIC)

Likelihood ratio tests provide an approach to model selection for
nested hypotheses, but what do we do when models are not nested?

A more general approach is to compare likelihoods of different models
by penalizing the likelihood of each model by a measure of its
complexity.

Akaike’s information criterion AIC is given by

AIC = −2× `(θ) + 2D

“Minus twice the maximized log likelihood plus twice the number of
parameters.”

We are invited to select the model with the lowest AIC score.

AIC was derived as an approach to minimizing prediction error.
Increasing the number of parameters leads to additional overfitting
which can decrease predictive skill of the fitted model.



A caution for using AIC

Viewed as a hypothesis test, AIC may have weak statistical properties.

It is a mistake to interpret AIC by making a claim that the favored
model has been shown to provides a superior explanation of the data.

However, viewed as a way to select a model with reasonable predictive
skill from a range of possibilities, it is often useful.



Comparing AIC with likelihood ratio tests

Question 5.2. Suppose we are in a situation in which we wish to choose
between two nested hypotheses, with dimensions D〈0〉 < D〈1〉. Suppose
the Wilks approximation is valid. Consider the strategy of selecting the
model with the lowest AIC value, and view this model selection approach
as a formal statistical test.

(A) Find an expression for the size of this AIC test (i.e, the probability of
rejecting the null hypothesis, H〈0〉, when this null hypothesis is true).

(B) Evaluate this expression for D〈1〉 −D〈0〉 = 1.



Likelihood-based inference for ARMA models in R

The Great Lakes are an important resource for leisure, agriculture and
industry in this region.

A past concern has been whether human activities such as water
diversion or channel dredging might be leading to a decline in lake
levels.

An additional current concern is the effects of climate change. The
physical mechanisms are not always obvious: for example, evaporation
tends to be highest when the weather is cold but the lake is not
ice-covered.

We look at monthly time series data on the depth of Lake Huron.



Reading in the data

Here is the head of the file huron_depth.csv

# downloaded on 1/24/16 from

# http://www.glerl.noaa.gov/data/dashboard/data/levels/mGauge/miHuronMog.csv

# Lake Michigan-Huron:, Monthly Average Master Gauge Water Levels (1860-Present)

# Source:, NOAA/NOS

Date, Average

01/01/1860,177.285

02/01/1860,177.339

03/01/1860,177.349

04/01/1860,177.388

05/01/1860,177.425

huron_depth.csv


A bit of work has to be done manipulating the Date variable.
Moving between date formats is a necessary skill for time series
analysis!
A standard representation of time is POSIXct, which is a signed real
number representing the number of seconds since the beginning of
1970.
The raw data have a character string representing date. We convert
this into the standard format using strptime. Than we can extract
whatever we need. See ?DateTimeClasses for more on manipulating
date and time formats in R.

dat <- read.table(file="huron_depth.csv",sep=",",header=TRUE)

dat$Date <- strptime(dat$Date,"%m/%d/%Y")

dat$year <- as.numeric(format(dat$Date, format="%Y"))

dat$month <- as.numeric(format(dat$Date, format="%m"))

head(dat,3)

## Date Average year month

## 1 1860-01-01 177.285 1860 1

## 2 1860-02-01 177.339 1860 2

## 3 1860-03-01 177.349 1860 3

Date
POSIXct
strptime
?DateTimeClasses


For now, let’s avoid monthly seasonal variation by considering an annual
series of January depths. We will investigate seasonal variation later in the
course, but sometimes it is best avoided.

dat <- subset(dat,month==1)

huron_depth <- dat$Average

year <- dat$year

plot(huron_depth~year,type="l")



Fitting an ARMA model

Later, we will consider hypotheses of trend. For now, let’s start by
fitting a stationary ARMA(p, q) model under the null hypothesis that
there is no trend. This hypothesis, which asserts that nothing has
substantially changed in this system over the last 150 years, is not
entirely unreasonable from looking at the data.

We seek to fit a stationary Gaussian ARMA(p,q) model with
parameter vector θ = (φ1:p, ψ1:q, µ, σ

2) given by

φ(B)(Yn − µ) = ψ(B)εn,

where

µ = E[Yn]

φ(x) = 1− φ1x− · · · − φpxp,
ψ(x) = 1 + ψ1x+ · · ·+ ψqx

q,

εn ∼ iidN [0, σ2].



Choosing p and q

We need to decide where to start in terms of values of p and q.

We tabulate AIC values for a range of different choices of p and q.

aic_table <- function(data,P,Q){
table <- matrix(NA,(P+1),(Q+1))

for(p in 0:P) {
for(q in 0:Q) {

table[p+1,q+1] <- arima(data,order=c(p,0,q))$aic

}
}
dimnames(table) <- list(paste("AR",0:P, sep=""),paste("MA",0:Q,sep=""))

table

}
huron_aic_table <- aic_table(huron_depth,4,5)

require(knitr)

kable(huron_aic_table,digits=2)



MA0 MA1 MA2 MA3 MA4 MA5
AR0 166.75 46.60 7.28 -14.97 -18.64 -26.09
AR1 -38.00 -37.41 -35.46 -33.82 -34.13 -32.20
AR2 -37.33 -38.43 -36.90 -34.93 -34.35 -33.08
AR3 -35.52 -35.17 -32.71 -31.38 -33.21 -32.98
AR4 -33.94 -34.91 -34.43 -37.48 -31.31 -30.90

Question 5.3. What do we learn by interpreting the results in the above
table of AIC values?

Question 5.4. In what ways might we have to be careful not to
over-interpret the results of this table?



Let’s fit the ARMA(2,1) model recommended by consideration of AIC.

huron_arma21 <- arima(huron_depth,order=c(2,0,1))

huron_arma21

##

## Call:

## arima(x = huron_depth, order = c(2, 0, 1))

##

## Coefficients:

## ar1 ar2 ma1 intercept

## -0.0525 0.7910 1.0000 176.4603

## s.e. 0.0522 0.0526 0.0242 0.1210

##

## sigma^2 estimated as 0.04188: log likelihood = 24.21, aic = -38.43

We can examine the roots of the AR polynomial,

AR_roots <- polyroot(c(1,-coef(huron_arma21)[c("ar1","ar2")]))

AR_roots

## [1] 1.158083-0i -1.091668+0i



The roots are just outside the unit circle, suggesting we have a
stationary causal fitted ARMA.

However, the MA root is −1, showing that the fitted model is at the
threshold of non-invertibility.

Is this non-invertibility a problem? Let’s investigate a little, using
profile and bootstrap methods. The claimed standard error on the
MA1 coefficient, from the Fisher information approach used by arima

is small.

First, we can see if the approximate confidence interval constructed
using profile likelihood is in agreement with the approximate
confidence interval constructed using the observed Fisher information.

To do this, we need to maximize the ARMA likelihood while fixing
the MA1 coefficient at a range of values. This is done using arima in
the code below.

Note that the fixed argument expects a vector of length p+ q + 1
corresponding to a concatenated vector (φ1:p, ψ1:q, µ). Somehow, the
Gaussian white noise variance, σ2, is not included in this
representation. Parameters with NA entries in fixed are estimated.

arima
arima
fixed
NA
fixed


K <- 500

ma1 <- seq(from=0.2,to=1.1,length=K)

profile_loglik <- rep(NA,K)

for(k in 1:K){
profile_loglik[k] <- logLik(arima(huron_depth,order=c(2,0,1),

fixed=c(NA,NA,ma1[k],NA)))

}
plot(profile_loglik~ma1,ty="l")

Question 5.5. Interpret the profile likelihood plot for ψ1.



Question 5.6. What do you conclude about the Fisher information
confidence interval proposed by arima?

Question 5.7. When do you think the Fisher information confidence
interval may be reliable?

Question 5.8. Is this profile likelihood plot, and its statistical
interpretation, reliable? How could you support your opinion on this?

arima


A simulation study

set.seed(57892330)

J <- 1000

params <- coef(huron_arma21)

ar <- params[grep("^ar",names(params))]

ma <- params[grep("^ma",names(params))]

intercept <- params["intercept"]

sigma <- sqrt(huron_arma21$sigma2)

theta <- matrix(NA,nrow=J,ncol=length(params),

dimnames=list(NULL,names(params)))

for(j in 1:J){
Y_j <- arima.sim(

list(ar=ar,ma=ma),

n=length(huron_depth),

sd=sigma

)+intercept

theta[j,] <- coef(arima(Y_j,order=c(2,0,1)))

}
hist(theta[,"ma1"],freq=FALSE)



This seems consistent with the profile likelihood plot.

A density plot shows this similarity even more clearly.



plot(density(theta[,"ma1"],bw=0.05))

Here, we look at the raw plot for instructional purposes. For a report,
one should improve the default axis labels and title.
Note that arima transforms the model to invertibility. Thus, the
estimated value of θ1 can only fall in the interval [−1, 1].

range(theta[,"ma1"])

## [1] -1 1

Estimated densities outside [−1, 1] are artifacts of the density
estimation procedure.
How would you refine this procedure to get a density estimate
respecting the range of the parameter estimation procedure?
To understand what is going on better, it is helpful to do another
simulation study for which we fit ARMA(2,1) when the true model is
AR(1).
When doing simulation studies, it is helpful to use multicore
computing, which most of us have on our machines nowadays.
A basic approach to multicore statistical computing is to tell R you
want it to look for available processors, using the doParallel

package.

arima
doParallel


library(doParallel)

registerDoParallel()

We can use foreach to carry out a parallel for loop where jobs are sent
to different processors.

J <- 1000

huron_ar1 <- arima(huron_depth,order=c(1,0,0))

params <- coef(huron_ar1)

ar <- params[grep("^ar",names(params))]

intercept <- params["intercept"]

sigma <- sqrt(huron_ar1$sigma2)

t1 <- system.time(

huron_sim <- foreach(j=1:J) %dopar% {
Y_j <- arima.sim(list(ar=ar),n=length(huron_depth),sd=sigma)+intercept

try(coef(arima(Y_j,order=c(2,0,1))))

}
)

foreach
for


Some of these arima calls did not successfully produce parameter
estimates. The try function lets the simulation proceed despite these
errors. Let’s see how many of them fail:

sum(sapply(huron_sim, function(x) inherits(x,"try-error")))

## [1] 4

arima
try


Now, for the remaining ones, we can look at the resulting estimates of
the MA1 component:

ma1 <- unlist(lapply(huron_sim,function(x)

if(!inherits(x,"try-error"))x["ma1"] else NULL ))

hist(ma1,breaks=50)



When the true model is AR1 and we fit ARMA(2,1), it seems that we
often obtain a model with estimated MA1 coefficient on the boundary
of invertibility.

It is clear from this that we cannot reject an AR1 hypothesis, even
though the Fisher information based analysis appears to give strong
evidence that the data should be modeled with a nonzero MA1
coefficient.

It may be sensible to avoid fitted models too close to the boundary of
invertibility. This is a reason not to blindly accept whatever model
AIC might suggest.



Question 5.9. What else could we look for to help diagnose, and
understand, this kind of model fitting problem? Hint: pay some more
attention to the roots of the fitted ARMA(2,1) model.



Assessing the numerical correctness of evaluation and
maximization of the likelihood function

We can probably suppose that arima has negligible numerical error in
evaluating the likelihood.

Likelihood evaluation is a linear algebra computation which should be
numerically stable away from singularities.

Possibly, numerical problems could arise for models very close to
reducibility (canceling AR and MA roots).

Numerical optimization is more problematic.

arima calls the general purpose optimization routine optim.

We know the likelihood surface can be multimodal and have nonlinear
ridges; both these are consequences of the possibility of reducibility or
near reducibility (AR and MA roots which almost cancel).

No optimization procedure is reliable for maximizing awkward,
non-convex functions.

Evidence for imperfect maximization (assuming negligible likelihood
evaluation error) can be found in the above AIC table.

arima
arima
optim


MA0 MA1 MA2 MA3 MA4 MA5
AR0 166.8 46.6 7.3 -15.0 -18.6 -26.1
AR1 -38.0 -37.4 -35.5 -33.8 -34.1 -32.2
AR2 -37.3 -38.4 -36.9 -34.9 -34.3 -33.1
AR3 -35.5 -35.2 -32.7 -31.4 -33.2 -33.0
AR4 -33.9 -34.9 -34.4 -37.5 -31.3 -30.9

Question 5.10. How is this table inconsistent with perfect maximization?

Hint: recall that, for nested hypotheses H〈0〉 ⊂ H〈1〉, the likelihood
maximized over H〈1〉 cannot be less than the likelihood maximized
over H〈0〉.
Recall also the definition of AIC,
AIC = -2× maximized log likelihood + 2× number of parameters
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