
Chapter 6. Extending the ARMA model: Seasonality and
trend

Objectives

1 Monthly time series often exhibit seasonal variation. January data are
similar to observations at a different January, etc.

2 Many time series exhibit a trend.

3 We wish to extend the theoretical and practical elegance of the
ARMA framework to cover these situations.



Seasonal autoregressive moving average (SARMA) models

A general SARMA(p, q)× (P,Q)12 model for monthly data is

[S1] φ(B)Φ(B12)(Yn − µ) = ψ(B)Ψ(B12)εn,

where {εn} is a white noise process and

µ = E[Yn]

φ(x) = 1− φ1x− · · · − φpxp,
ψ(x) = 1 + ψ1x+ · · ·+ ψqx

q,

Φ(x) = 1− Φ1x− · · · − ΦPx
P ,

Ψ(x) = 1 + Ψ1x+ · · ·+ ΨQx
Q.

A SARMA model is a special case of an ARMA model, where the AR
and MA polynomials are factored into a monthly polynomial in B
and an annual polynomial in B12. The annual polynomial is also
called the seasonal polynomial.

Thus, everything we learned about ARMA models (including assessing
causality, invertibility and reducibility) also applies to SARMA.



Choosing the period for a SARMA model

For the SARMA(p, q)× (P,Q)12 model, 12 is called the period.

One could write a SARMA model for some period other than 12.

A SARMA(p, q)× (P,Q)4 model could be appropriate for quarterly
data.

In principle, a SARMA(p, q)× (P,Q)52 model could be appropriate
for weekly data, though in practice ARMA and SARMA may not work
so well for higher frequency data.

The seasonal period should be appropriate for the system being
modeled. It is usually inappropriate to fit a SARMA(p, q)× (P,Q)9
model just because you notice a high sample autocorrelation at lag 9.



Consider the following two models:

[S2] Yn = 0.5Yn−1 + 0.25Yn−12 + εn,

[S3] Yn = 0.5Yn−1 + 0.25Yn−12 − 0.125Yn−13 + εn,

Question 6.1. Which of [S2] and/or [S3] is a SARMA model?

Question 6.2. Why do we assume a multiplicative structure in [S1]?
What theoretical and practical advantages (or disadvantages) arise from
requiring that an ARMA model for seasonal behavior has polynomials that
can be factored as a product of a monthly polynomial and an annual
polynomial?



Fitting a SARMA model

Let’s do this for the full, monthly, version of the Lake Huron depth data
described earlier.

head(dat,3)

## Date Average year month

## 1 1860-01-01 177.285 1860 1

## 2 1860-02-01 177.339 1860 2

## 3 1860-03-01 177.349 1860 3

huron_depth <- dat$Average

time <- dat$year + dat$month/12

# Note: we treat December 2011 as time 2012.0, etc

plot(huron_depth~time,type="l")



Now, we get to fit a model. Based on our previous analysis, we’ll go with
AR(1) for the annual polynomial. Let’s try ARMA(1,1) for the monthly
part. In other words, we seek to fit the model

(1− Φ1B
12)(1− φ1B)Yn = (1 + ψ1B)εn.

huron_sarma11x10 <- arima(huron_depth,

order=c(1,0,1),

seasonal=list(order=c(1,0,0),period=12)

)



huron_sarma11x10

##

## Call:

## arima(x = huron_depth, order = c(1, 0, 1), seasonal = list(order = c(1, 0, 0),

## period = 12))

##

## Coefficients:

## ar1 ma1 sar1 intercept

## 0.9641 0.3782 0.5104 176.5714

## s.e. 0.0063 0.0203 0.0218 0.0909

##

## sigma^2 estimated as 0.002592: log likelihood = 2884.36, aic = -5758.72



Residual analysis

Residual analysis is similar to non-seasonal ARMA models.
We look for residual correlations at lags corresonding to multiples of
the period (here, 12, 24, 36, ...) for misspecified annual dependence.

Question 6.3. What do you conclude from this residual analysis? What
would you do next?



ARMA models for differenced data

Applying a difference operation to the data can make it look more
stationary and therefore more appropriate for ARMA modeling.

This can be viewed as a transformation to stationarity

We can transform the data y1:N to z2:N

zn = ∆yn = yn − yn−1.

Then, an ARMA(p,q) model Z2:N for the differenced data z2:N is
called an integrated autoregressive moving average model for
y1:N and is written as ARIMA(p,1,q).

Formally, the ARIMA(p,d,q) model with intercept µ for Y1:N is

[S4] φ(B)
(
(1−B)dYn − µ

)
= ψ(B)εn,

where {εn} is a white noise process; φ(x) and ψ(x) are ARMA
polynomials.

It is unusual to fit an ARIMA model with d > 1.



We see that an ARIMA(p,1,q) model is almost a special case of an
ARMA(p+1,q) model with a unit root to the AR(p+1) polynomial.

Question 6.4. Why “almost” not “exactly” in the previous statement?



Two reasons to fit an ARIMA(p,d,q) model with d > 0

1. You may really think that modeling the differences is a natural
approach for your data. The S&P 500 stock market index analysis in
Chapter 3 is an example of this, as long as you remember to first apply a
logarithmic transform to the data.
2. Differencing often makes data look “more stationary” and perhaps it
will then look stationary enough to justify applying the ARMA machinery.

We should be cautious about this second reason. It can lead to poor
model specifications and hence poor forecasts or other conclusions.

The second reason was more compelling in the 1970s and 1980s.
Limited computing power resulted in limited alternatives, so it was
practical to force as many data analyses as possible into the ARMA
framework and use method of moments estimators.



Practical advice on using ARIMA models

ARIMA analysis is relatively simple to do. It has been a foundational
component of time series analysis since the publication of the
influential book “Time Series Analysis” by Box and Jenkins (1st
edition, 1970) which developed and popularized ARIMA modeling.

A practical approach is:

1. Do a competent ARIMA analysis.

2. Identify potential limitations in this analysis and remedy them
using more advanced methods.

3. Assess whether you have in fact learned anything from (2) that
goes beyond (1).



The SARIMA(p, d, q)× (P,D,Q) model

Combining integrated ARMA models with seasonality, we can write a
general SARIMA(p, d, q)× (P,D,Q)12 model for nonstationary monthly
data, given by

[S5] φ(B)Φ(B12)
(
(1−B)d(1−B12)DYn − µ

)
= ψ(B)Ψ(B12)εn,

where {εn} is a white noise process, the intercept µ is the mean of the
differenced process {(1−B)d(1−B12)DYn}, and we have ARMA
polynomials φ(x), Φ(x), ψ(x), Ψ(x) as in model [S1].

The SARIMA(0, 1, 1)× (0, 1, 1)12 model has often been used for
forecasting monthly time series in economics and business. It is
sometimes called the airline model after a data analysis by Box and
Jenkins (1970).



Modeling trend with ARMA noise

A general signal plus noise model is

[S6] Yn = µn + ηn,

where {ηn} is a stationary, mean zero stochastic process, and µn is
the mean function.

If, in addition, {ηn} is uncorrelated, then we have a signal plus white
noise model. The usual linear trend regression model fitted by least
squares in Chapter 2 corresponds to a signal plus white noise model.

We can say signal plus colored noise if we wish to emphasize that
we’re not assuming white noise.

Here, signal and trend are used interchangeably. In other words, we
are assuming a deterministic signal.

At this point, it is natural for us to consider a signal plus ARMA(p,q)
noise model, where {ηn} is a stationary, causal, invertible ARMA(p,q)
process with mean zero.

As well as the p+ q + 1 parameters in the ARMA(p,q) model, there
will usually be unknown parameters in the mean function.



Linear regression with ARMA errors

When the mean function (also known as the trend) has a linear
specification,

µn =

K∑
k=1

Zn,kβk,

the signal plus ARMA noise model is known as linear regression
with ARMA errors.

Writing Y for a column vector of Y1:N , µ for a column vector of µ1:N ,
η for a column vector of η1:N , and Z for the N ×K matrix with
(n, k) entry Zn,k, we have a general linear regression model with
correlated ARMA errors,

Y = Zβ + η.



Inference for the linear regression model with ARMA errors

Maximum likelihood estimation of θ = (φ1:p, ψ1:q, σ
2, β) is a nonlinear

optimization problem.

Fortunately, arima in R can do it for us.

As usual, we should look out for signs of numerical problems.

Data analysis for a linear regression with ARMA errors model, using
the framework of likelihood-based inference, is procedurally similar to
fitting an ARMA model.

This is a powerful technique, since the covariate matrix Z can include
other time series. We can evaluate associations between different
time series.

With appropriate care (since association is not causation) we can
draw inferences about mechanistic relationships between dynamic
processes.

arima


Evidence for systematic trend in Lake Huron depth?

Let’s go back to annual data, say the January depth, to avoid seasonality.

Visually, there seems some evidence for a decreasing trend, but there
are also considerable fluctuations.
Let’s test for a trend, using a regression model with Gaussian AR(1)
errors. We have previously found that this is a reasonable model for
these data.
First, let’s fit a null model.

fit0 <- arima(huron,order=c(1,0,0))



##

## Call:

## arima(x = huron, order = c(1, 0, 0))

##

## Coefficients:

## ar1 intercept

## 0.8694 176.4588

## s.e. 0.0407 0.1234

##

## sigma^2 estimated as 0.04368: log likelihood = 22, aic = -38

fit1 <- arima(huron,order=c(1,0,0),xreg=year)

##

## Call:

## arima(x = huron, order = c(1, 0, 0), xreg = year)

##

## Coefficients:

## ar1 intercept year

## 0.8240 186.0146 -0.0049

## s.e. 0.0451 3.7417 0.0019

##

## sigma^2 estimated as 0.0423: log likelihood = 24.62, aic = -41.25



Setting up a formal hypothesis test

To talk formally about these results, we must down a model and some
hypotheses.

Writing the data as y1:N , collected at years t1:N , the model we have
fitted is

(1− φ1B)(Yn − µ− βtn) = εn,

where {εn} is Gaussian white noise with variance σ2. Our null model
is

H〈0〉 : β = 0,

and our alternative hypothesis is

H〈1〉 : β 6= 0.



Question 6.5. How do we test H〈0〉 against H〈1〉?

Construct two different tests using the R output above.

Which test do you prefer, and why?

How would you check whether your preferred test is indeed better?



Question 6.6. What other supplementary analysis could you do to
strengthen your conclusions?
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