
Chapter 7. Introduction to time series analysis in the
frequency domain

Objectives

This course emphasizes time domain analysis of time series, but we also
want to be able to present and interpret the frequency domain properties
of our time series models and data.

1 Looking at the frequency components present in our data can help to
identify appropriate models.

2 Looking at the frequency components present in our models can help
to assess whether they are doing a good job of describing our data.



What is the spectrum of a time series model?

We begin by reviewing eigenvectors and eigenvalues of covariance
matrices. This eigen decomposition also arises elsewhere in statistics,
e.g. principle component analysis.

A univariate time series model is a vector-valued random variable
Y1:N which we suppose has a covariance matrix V which is an N ×N
matrix with entries Vmn = Cov(Ym, Yn).

V is a non-negative definite symmetric matrix, and therefore has N
non-negative eigenvalues λ1, . . . , λN with corresponding eigenvectors
u1, . . . , uN such that

V un = λnun.

A basic property of these eigenvectors is that they are orthogonal, i.e.,

u
t
mun = 0 if m 6= n.

We may work with normalized eigenvectors that are scaled such that
utnun = 1.



We can also check that the components of Y in the directions of
different eigenvectors are uncorrelated.

Since Cov(AY,BY ) = ACov(Y, Y )Bt, we have

Cov(u
t
mY, u

t
nY ) = u

t
mCov(Y, Y )un

= u
t
mV un

= λnu
t
mun

=

{
λn if m = n
0 if m 6= n

For the last equality, we have supposed that the eigenvectors are
normalized.

Thus, if we knew V , we could convert the model to a representation
where the observable random variables are uncorrelated.

Specifically, we could transform the data into its components in the
directions of the eigenvectors of the model. An uncorrelated (or, in
the Gaussian case, independent) model would then become
appropriate for this transformation of the data.



Eigenvectors for the covariance matrix of an AR(1) model
with N = 100 and φ = 0.8

N <- 100; phi <- 0.8; sigma <- 1

V <- matrix(NA,N,N)

for(m in 1:N) for(n in 1:N) V[m,n]<-sigma^2*phi^abs(m-n)/(1-phi^2)

V_eigen <- eigen(V,symmetric=TRUE)

matplot(V_eigen$vectors[,1:5],type="l")

matplot(V_eigen$vectors[,6:9],type="l")



Eigenvalues for the covariance matrix of an AR(1) model
with N = 100 and φ = 0.8

We see that the eigenvectors, plotted as functions of time, look like
sine wave oscillations.

The eigenvalues are

round(V_eigen$values[1:9],2)

## [1] 24.59 23.44 21.73 19.70 17.57 15.51 13.61 11.91 10.42

We see that the eigenvalues are decreasing. For this model, the
components of Y1:N with highest variance correspond to long-period
oscillations.

Are the sinusoidal eigenvectors a special feature of this particular time
series model, or something more general?



The eigenvectors for a long stationary time series model

Suppose {Yn,−∞ < n <∞} has a stationary autocovariance
function γh.

We write Γ for the infinite matrix with entries

Γm,n = γm−n for all integers m and n.

An infinite eigenvector is a sequence u = {un,−∞ < n <∞} with
corresponding eigenvalue λ such that

Γu = λu,

or, writing out the matrix multiplication explicitly,

∞∑
n=−∞

Γm,nun = λum for all m.

Now, let’s look for a sinusoidal solution, un = eiωn.



∞∑
n=−∞

Γm,nun =

∞∑
n=−∞

γm−nun

=

∞∑
h=−∞

γhum−h setting h = m− n

=

∞∑
h=−∞

γhe
iω(m−h)

= eiωm
∞∑

h=−∞
γhe
−iωh

= umλ for λ =

∞∑
h=−∞

γhe
−iωh

Question 7.1. Why does this calculation show that un(ω) = eiωn is an
eigenvector for Γ for any choice of ω.
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The corresponding eigenvalue function,

λ(ω) =

∞∑
h=−∞

γhe
−iωh,

is called the spectral density function. It is calculated as the
Fourier transform of γh at frequency ω.

It was convenient to do this calculation with complex exponentials.
However, writing

eiωn = cos(ωn) + i sin(ωn)

we see that the real and imaginary parts of this calculation in fact
give us two real eigenvectors, cos(ωn) and sin(ωn).

Question 7.2. Review: how would you demonstrate the correctness of the
identity eiω = cos(ω) + i sin(ω).
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Assuming that this computation for an infinite sum represents a limit
of increasing dimension for finite matrices, we have found that the
eigenfunctions for any long, stationary time series model are
approximately sinusoidal.

For the finite time series situation, we only expect N eigenvectors for
a time series of length N . We have one eigenvector for ω = 0, two
eigenvectors corresponding to sine and cosine functions with frequency

ωn = 2πn/N, for 0 < n < N/2,

and, if N is even, a final eigenvector with frequency

ω(N/2) = π.

These sine and cosine vectors are called the Fourier basis.
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Frequency components of the data and their representation
via the Fourier transform

The frequency components of Y1:N are the components in the
directions of these eigenvectors. Equivalently, we could say they are
the representation of Y1:N in the Fourier basis. Specifically, we write

Cn =
1√
N

N∑
k=1

Yk cos(ωnk) for 0 ≤ n ≤ N/2,

Sn =
1√
N

N∑
k=1

Yk sin(ωnk) for 1 ≤ n ≤ N/2.

Similarly, the frequency components of data y1:N are

cn =
1√
N

N∑
k=1

yk cos(ωnk) for 0 ≤ n ≤ N/2,

sn =
1√
N

N∑
k=1

yk sin(ωnk) for 1 ≤ n ≤ N/2.



The frequency components of the data are often written as real and
imaginary parts of the discrete Fourier transform,

dn =
1√
N

N∑
k=1

yke
2πin/N

= cn + isn

Here, we have introduced a normalizing constant of 1/
√
N . There are

various choices about signs and factors of 2π,
√

2π and
√
N that

can—and are—made in the definition of the Fourier transform in
various situations.

One should try to be consistent, and also be careful: the fft

command in R, for example, does not include this constant.

fft is an implementation of the fast Fourier transform algorithm,
which enables computation of all the frequency components with
order N log(N) computation. At first consideration, computing the
frequency components appears to require a matrix multiplication
involving order N3 additions and multiplications. When N = 105 or
N = 106 this difference becomes important!

fft
fft
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The first frequency component, C0, is something of a special case,
since it has mean µ = E[Yn] whereas the other components have
mean zero.

In practice, we subtract a mean before computing the periodogram,
which is equivalent to removing the frequency component for
frequency zero.

The frequency components (C0:N/2, S1:N/2) are asymptotically
uncorrelated. They are constructed as a sum of a large number of
terms, with the usual 1/

√
N scaling for a central limit theorem. So, it

may not be surprising that a central limit theorem applies, giving
asymptotic justification for the following normal approximation.

Moving to the frequency domain (i.e., transforming the data to its
frequency components) has decorrelated the data. Statistical
techniques based on assumptions of independence are appropriate
when applied to frequency components.



Normal approximation for the frequency components

(C1:N/2, S1:N/2) are approximately independent, mean zero, Normal
random variables with

Var(Cn) = Var(Sn) ≈ 1/2λ(ωn).

C0

/√
N is approximately Normal, mean µ, independent of

(C1:N/2, S1:N/2), with

Var(C0

/√
N) ≈ λ(0)

/
N.

It follows from the normal approximation that, for 1 ≤ n ≤ N/2,

C2
n + S2

n ≈ λ(ωn)
χ2
2

2
,

where χ2
2 is a chi-squared random variable on two degrees of freedom.

Taking logs, we have

log
(
C2
n + S2

n

)
≈ log λ(ωn) + log(χ2

2/2).
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These results motivate consideration of the periodogram,

In = c2n + s2n =
∣∣dn∣∣2

as an estimator of the spectral density.

log In can be modeled as an estimator of the log spectral density with
independent, identically distributed errors.

We see from the normal approximation that a signal-plus-white-noise
model is appropriate for estimating the log spectral density using the
log periodogram.
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Interpreting the spectral density as a power spectrum

The power of a wave is proportional to the square of its amplitude.

The spectral density gives the mean square amplitude of the
components at each frequency, and therefore gives the expected
power.

The spectral density function can therefore be called the power
spectrum.

Question 7.3. compute the spectrum of an AR(1) model.
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Question 7.4. compute the spectrum of the MA(q) moving mean,

Yn =
1

q + 1

q∑
k=0

εn−k.
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Some data analysis using the frequency domain:
Michigan winters revisited

y <- read.table(file="ann_arbor_weather.csv",header=TRUE)

head(y[,1:9],3)

## Year Low High Hi_min Lo_max Avg_min Avg_max Mean Precip

## 1 1900 -7 50 36 12 18 34.7 26.3 1.06

## 2 1901 -7 48 37 20 17 31.8 24.4 1.45

## 3 1902 -4 41 27 11 15 30.4 22.7 0.60

We have to deal with the NA measurement for 1955. A simple
approach is to replace the NA by the mean.

What other approaches can you think of for dealing with this missing
observation?

What are the strengths and weaknesses of these approaches?

low <- y$Low

low[is.na(low)] <- mean(low, na.rm=TRUE)



spectrum(low, main="Unsmoothed periodogram")

To smooth, we use the default periodogram smoother in R
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spectrum(low, spans=c(3,5,3), main="Smoothed periodogram",

ylim=c(15,100))
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Question 7.5. What is the default periodogram smoother in R?

Question 7.6. How should we use it?

Question 7.7. Why is that default chosen?

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides

randall-stat-ionides



More details on computing and smoothing the periodogram

To see what R actually does to compute and smooth the
periodogram, type ?spectrum.

This will lead you to type ?spec.pgram.

You will see that, by default, R removes a linear trend, fitted by least
squares. This may often be a sensible thing to do. Why?

You will see that R then multiplies the data by a quantity called a
taper, computed by spec.taper.

The taper smooths the ends of the time series and removes
high-frequency artifacts arising from an abrupt start and end to the
time series.

Formally, from the perspective of the Fourier transform, the time
series takes the value zero outside the observed time points 1 : N .
The sudden jump to and from zero at the start and end produces
unwanted effects in the frequency domain.

?spectrum
?spec.pgram
spec.taper


The default taper in R smooths the first and last p = 0.1 fraction of the
time points, by modifying the detrended data y1:N to tapered version z1:N
defined by

zn =


yn
(
1− cos(πn/Np)

)
/2 if 1 ≤ n < Np

yn if Np ≤ n ≤ N(1− p)
yn
(
1− cos(π[N + 1− n]/Np)

)
/2 if N(1− p) < n ≤ N

plot(spec.taper(rep(1,100)),type="l",

main="Default taper in R, for a time series of length 100")

abline(v=c(10,90),lty="dotted",col="red")
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Spectral density estimation by fitting a model

Another standard way to estimate the spectrum is to fit an AR(p) model
with p selected by AIC.

spectrum(low,method="ar",

main="Spectrum estimated via AR model picked by AIC")



Units of frequency

It is always good practice to be explicit about the units of quantities.
For frequency domain analysis there are different options for units of
frequency.

For a frequency component corresponding to sin(2πωn) or
cos(2πωn), we say that the frequency is ω cycles per unit time.

Suppose the time series consists of equally spaced observations, with
tn − tn−1 = ∆ years. Then we say that the frequency is ω/∆ cycles
per year.

For a frequency component corresponding to sin(νt) or cos(νt), we
say that the frequency is ν radians per unit time.



Units for the period

The period of an oscillation is the time for one cycle. So, when
frequency is measured in cycles per time, we have

period =
1

frequency
.

Thus, for a frequency component corresponding to sin(2πωn) or
cos(2πωn), the period is 1/ω observation intervals.

When the observation intervals have constant time length (years,
seconds, etc) we usually use those units for the period.
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