
Chapter 9. Introduction to partially observed Markov
process models

Objectives

1 Develop a framework for thinking about models that consist of a
stochastic dynamic system observed with noise.

2 In the linear Gaussian case, develop matrix operations to find an exact
and computationally fast algorithm for the likelihood function. This
algorithm is called the Kalman filter.

3 Understand how the Kalman filter is used to compute the likelihood
for ARMA models.

4 See how the Kalman filter also facilitates forecasting and estimation
of the state of the unobserved process.

5 Start to investigate the general nonlinear filtering equations.



Partially observed Markov processes (POMP) models

Uncertainty and variability are ubiquitous features of processes in the
biological and social sciences. A physical system obeying Newton’s
laws is fully predictable, but complex systems are in practice not
perfectly predictable—we can only forecast weather reliably in the
near future.

Basic time series models of deterministic trend plus colored noise
imply perfect predictability if the trend function enables extrapolation.

To model variability and unpredictability in low frequency
components, we may wish to specify a random process model for how
the system evolves. We could call this a “stochastic trend” approach,
though that is an oxymoron since we’ve defined trend to be expected
value for the model.

As in the deterministic signal plus noise model, we will model the
observations as random variables conditional on the trajectory of a
latent process. It can also be called a state process or a hidden
process.



The Markov property

A standard class of latent process models is characterized by the
requirement that the future evolution of the system depends only on
the current state, plus randomness introduced in future.

A model of this type is called a Markov chain for a discrete time
model or a Markov process in continuous time.

We use the term Markov process for both discrete and continous time.

Partial observations here mean either or both of (i) measurement
noise; (ii) entirely unmeasured latent variables. Both these features
are present in many systems.

A partially observed Markov process (POMP) model is defined by
putting together a latent process model and an observation model.



Often, much of the scientific interest is in understanding what models
for the behavior of this latent process are consistent with the data.

A good model for the underlying, but imperfectly observed, dynamics
of a system can also lead to a skillful forecast.

We are going to introduce a general framework for specifying POMP
models. This generality will give us the flexibility to develop models
and methods appropriate to a range of applications.



Discrete time Markov processes

A time series model X0:N is a Markov process model if the conditional
densities satisfy the Markov property that, for all n ∈ 1 : N .

[MP1] fXn|X1:n−1
(xn |x1:n−1) = fXn|Xn−1

(xn |xn−1),

We suppose that the random process Xn occurs at time tn for n ∈ 0 : N ,
so the discrete time process corresponds to time points in continuous time.



Initial conditions

We have initialized the Markov process model at a time t0, although
we will suppose that data are collected only at times t1:N .

The initialization model could be deterministic (a fixed value) or a
random variable.

Formally, a fixed initial value is a special case of a discrete distribution
having a point mass with probability one at the fixed value.
Therefore, fixed initial values are covered in our framework since we
use probability density functions to describe both discrete and
continuous probability distributions.

Mathematically, a probability mass function (for discrete
distributions) is a probability density on a discrete space. We avoid
getting sidetracked on to that topic, but it is worth noting that there
is a proper mathematical justification for treating a probability mass
function as a type of probability density function.

It is not important whether to adopt the convention that the Markov
process model is intialized at time t1 or at some previous time t0.
Here, we follow the choice to use t0.



The process nodel and one-step predictions

The probability density function fXn|Xn−1
(xn |xn−1) is called the

one-step transition density of the Markov process.

In words, the Markov property says that the next step taken by a
Markov process follows the one-step transition density based on the
current state, whatever the previous history of the process.

For a POMP model, the full joint distribution of the latent process is
entirely specified by the one-step transition densities, given the initial
value. We show this below.

Therefore, we also call fXn|Xn−1
(xn |xn−1) the process model.



Question 9.1. Use [MP1] to derive an expression for the joint distribution
of a Markov process as a product of the one-step transition densities. In
other words, derive

[MP2] fX0:N
(x0:N ) = fX0(x0)

∏N
n=1 fXn|Xn−1

(xn |xn−1).



Question 9.2. Show that a causal Gaussian AR(1) process is a Markov
process.



Time homogeneous transitions and stationarity

In general, the one step transition probability density in a POMP model
can depend on n. A latent process model X0:N is time-homogeneous if
the one step transition probability density does not depend on n, so there
is a conditional density f(y |x) such that, for all n ∈ 1 : N ,

fXn|Xn−1
(xn |xn−1) = f(xn |xn−1).

Question 9.3. If X0:N is stationary then it is time homogeneous. Why?

Question 9.4. Time homogeneity does not necessarily imply stationarity.
Find a counter-example. What has to be added to time homogeneity to
get stationarity?



The measurement model

We model the observation process random variables Y1:N .

For state space models, we will generally write the data as y1:N .

We model the measurement at time tn to depend only on the value of
the latent process at time tn, conditionally independent of all other
latent process and observation process variables. Formally, this
assumption is,

[MP3] fYn|X0:N ,Y1:n−1,Yn+1:N
(yn |x0:N , y1:n−1, yn+1:N ) = fYn|Xn

(yn |xn).

We call fYn|Xn
(yn |xn) the measurement model.



Time-inhomoegeneous measurement models

In general, the measurement model can depend on n or on any
covariate time series.

The measurement model is time-homogeneous if there is a
conditional probability density function g(y |x) such that, for all
n ∈ 1 : N ,

fYn|Xn
(yn |xn) = g(yn |xn).



Four basic calculations for working with POMP models

Many time series models in science, engineering and industry can be
written as POMP models. A reason that POMP models form a useful tool
for statistical work is that there are convenient recursive formulas to carry
out four basic calculations:

1 Prediction

2 Filtering

3 Smoothing

4 Likelihood calculation



Prediction

One-step prediction of the latent process at time tn+1 given data up
to time tn involves finding

fXn+1|Y1:n(xn+1 | y1:n).

We may want to carry out prediction (also called forecasting) more
than one time step ahead. However, unless specified otherwise, the
prediction calculation will be one-step prediction.

One-step prediction turns out to be closely related to computing the
likelihood function, and therefore central to statistical inference.

We have required our prediction to be a conditional probability
density, not a point estimate. In the context of forecasting, this is
called a probabilistic forecast, and has advantages over a point
estimate forecast. What are they? Are there any disadvantages to
probabilistic forecasting?



Filtering

The filtering calculation at time tn is to find the conditional
distribution of the latent process Xn given currently available data,
y1:n.

Filtering therefore involves calculating

fXn|Y1:n(xn | y1:n).

This can be calculated numerically or algebraically. We will also see
that Monte Carlo methods can be a good tool.



Smoothing

In the context of a POMP model, smoothing involves finding the
conditional distribution of Xn given all the data, y1:N .

So, the smoothing calculation is to find

fXn|Y1:N (xn | y1:N ).



The likelihood

The model may depend on a parameter vector θ.

Since we have not explicitly written this dependence above, the
likelihood calculation is to evaluate the joint density of Y1:N at the
data,

fY1:N (y1:N ).

If we can compute this at any value of θ we choose, we can perform
numerical optimization to get a maximum likelihood estimate

Likelihood evaluation and maximization lets us compute profile
likelihood confidence intervals, carry out likelihood ratio tests, and
make AIC model comparisons.



The prediction and filtering formulas

One-step prediction of the latent process at time tn given data up to
time tn−1 can be computed in terms of the filtering problem at time
tn−1, via the prediction formula for n ∈ 1 : N ,

[MP4] fXn|Y1:n−1
(xn | y1:n−1)

=

∫
fXn−1|Y1:n−1

(xn−1 | y1:n−1)fXn|Xn−1
(xn |xn−1) dxn−1.

To make this formula work for n = 1, we need the convention that
1 : k is the empty set when k = 0. Conditioning on an empty
collection of random variables is the same as not conditioning at all!
In this case, we have by definition that

fX0|Y1:0(x0 | y1:0) = fX0(x0).

In other words, the filtering calcuation at time t0 is the initial density
for the latent process. This makes sense, since at time t0 we have no
data to condition on.



Hints for homework: deriving the recursion formulae

Any general identity holding for densities must also hold when we
condition everything on a new variable.

Example 1. From

fXY (x, y) = fX(x) fY |X(y |x)

we can condition on Z to obtain

fXY |Z(x, y | z) = fX|Z(x | z) fY |XZ(y |x, z).

Example 2. the prediction formula is a special case of the identity

fX|Y (x | y) =

∫
fXZ|Y (x, z | y) dz.

Question 9.5. Why is the following identity true?

fX|Y Z(x | y, z) =
fY |XZ(y |x, z) fX|Z(x | z)

fY |Z(y | z)
.



Filtering at time tn can be computed by combining the new
information in the datapoint yn with the calculation of the one-step
prediction of the latent process at time tn given data up to time tn−1.

This is carried out via the filtering formula for n ∈ 1 : N ,

[MP5] fXn|Y1:n(xn | y1:n) =
fXn|Y1:n−1

(xn | y1:n−1) fYn|Xn
(yn |xn)

fYn|Y1:n−1
(yn | y1:n−1)

.



The denominator in the filtering formula [MP5] is the conditional
likelihood of yn given y1:n−1.

It can be computed in terms of the one-step prediction density, via
the conditional likelihood formula,

[MP6] fYn|Y1:n−1
(yn | y1:n−1) =∫

fXn|Y1:n−1
(xn | y1:n−1) fYn|Xn

(yn |xn) dxn.

To make this formula work for n = 1, we again take advantage of the
convention that 1 : k is the empty set when k = 0.



The prediction and filtering formulas are recursive. If they can be
computed for time tn then they provide the foundation for the
following computation at time tn+1.

Question 9.6. Give a detailed derivation of [MP4], [MP5] and [MP6],
being careful to note when you use the Markov property [MP1].



Computation of the likelihood

The likelihood of the entire dataset, y1:N can be found from [MP6],
using the identity

[MP7] fY1:N (y1:N ) =

N∏
n=1

fYn|Y1:n−1
(yn | y1:n−1).

As above, this formula [MP7] requires the convention that 1 : k is the
empty set when k = 0, so the first term in the product is

fY1|Y1:0(y1 | y1:0) = fY1(y1).

If our model has an unknown parameter θ, the likelihood identity
[MP7] lets us evaluate the log likelihood function,

`(θ) = log fY1:N (y1:N ; θ).



The smoothing formulas

Smoothing is less fundamental for likelihood-based inference than
filtering and one-step prediction.

Nevertheless, sometimes we want to compute the smoothing density,
so we develop some necessary formulas.

The filtering and prediction formulas are recursions forwards in time
(we use the solution at time tn−1 to carry out the computation at
time tn).

There are similar backwards recursion formulas,

[MP8] fYn:N |Xn
(yn:N |xn) = fYn|Xn

(yn |xn)fYn+1:N |Xn
(yn+1:N |xn).

[MP9] fYn+1:N |Xn
(yn+1:N |xn)

=

∫
fYn+1:N |Xn+1

(yn+1:N |xn+1) fXn+1|Xn
(xn+1 |xn) dxn+1.



The forwards and backwards recursion formulas together allow us to
compute the smoothing formula,

[MP10] fXn|Y1:N (xn | y1:N ) =
fXn|Y1:n−1

(xn | y1:n−1) fYn:N |Xn
(yn:N |xn)

fYn:N |Y1:n−1
(yn:N | y1:n−1)

.

Question 9.7. Show how [MP8], [MP9] and [MP10] follow from the basic
properties of conditional densities combined with the Markov property.



An algebraic trick: Using un-normalized identities

Sometimes we can avoid calculating a normalizing constant for a
density, since it can be worked out later using the property that the
probability density function must integrate to 1.

The denominators fYn|Y1:n−1
(yn | y1:n−1) and

fYn:N |Y1:n−1
(yn:N | y1:n−1), in equations [MP5] and [MP10]

respectively, may sometimes be hard to compute.

We can simplify [MP5] and [MP10] using the proportionality
relationship ∝. This gives,

[MP5′] fXn|Y1:n(xn | y1:n) ∝ fXn|Y1:n−1
(xn | y1:n−1) fYn|Xn

(yn |xn),

[MP10′] fXn|Y1:N (xn | y1:N ) ∝ fXn|Y1:n−1
(xn | y1:n−1) fYn:N |Xn

(yn:N |xn).

The normalizing “constant” avoided in equations [MP5’] and [MP10’]
does depend on y1:N . However, the data are fixed constants. The
variable in these equations is xn.



Linear Gaussian POMP (LG-POMP) models

Linear Gaussian partially observed Markov process (LG-POMP)
models have many applications

Gassian ARMA models are LG-POMP models. The POMP recursion
formulas give a computationally efficient way to obtain the likelihood
of a Gaussian ARMA model.

The computations for smoothing splines can be written as an
LG-POMP model, enabling computationally efficient spline
smooothing.

The Basic Structural Model is an LG-POMP used for econometric
forecasting. It models a stochastic trend, seasonality, and
measurement error, in a framework with econometrically interpretable
parameters. This is more interpretable than fitting SARIMA.

LG-POMP models are widely used in engineering, especially for
control applications. If a scientific and engineering application is not
too far from linear and Gaussian, you save a lot of effort if an
LG-POMP model is appropriate. General nonlinear POMP models
usually involve intensive Monte Carlo computation.



The general LG-POMP model

Suppose the latent process, X0:N , and the observation process {Yn}, takes
vector values with dimension dX and dY . A general mean zero LG-POMP
model is specified by

A sequence of dX × dX matrices, A1:N ,

A sequence of dX × dX covariance matrices, U0:N ,

A sequence of dY × dX matrices, B1:N

A sequence of dY × dY covariance matrices, V1:N .

We initialize with X0 ∼ N [0,U0] and then define the entire LG-POMP
model by a recursion for n ∈ 1 : N ,

[LG1] Xn = AnXn−1 + εn, εn ∼ N [0,Un],

[LG2] Yn = BnXn + ηn, ηn ∼ N [0,Vn].

Often, but not always, we will have a time-homogeneous LG-POMP
model, with An = A, Bn = B, Un = U and Vn = V for n ∈ 1 : N .



The LG-POMP representation of a Gaussian ARMA

Suppose {Yn} is a Gaussian ARMA(p,q) model with noise process
ωn ∼ N [0, σ2] and specification

[LG3] Yn =

p∑
j=1

φjYn−j + ωn +

q∑
k=1

ψqωn−k.

Set r = max(p, q + 1) so that {Yn} is also ARMA(r,r-1). Our LG-POMP
representation has dX = r, with

Bn = B = (1, 0, 0, . . . , 0)

and
Vn = V = 0.

Therefore, Yn is the first component of Xn, observed without
measurement error.



Now, define

Xn =


Yn
φ2Yn−1 + · · ·+ φrYn−r+1 + ψ1ωn + · · ·+ ψr−1ωn−r+2

φ3Yn−1 + · · ·+ φrYn−r+1 + ψ2ωn + · · ·+ ψr−1ωn−r+3
...
φrYn−1 + ψr−1ωt


We can check that the ARMA equation [LG3] corresponds to the matrix
equation

Xn = AXn−1 +


1
ψ1

ψ2
...
ψr−1

ωn. where A =


φ1 1 0 . . . 0

φ2 0 1
. . .

...
...

...
. . .

. . . 0
φr−1 0 . . . 0 1
φr 0 . . . 0 0


This is in the form of a time-homogenous LG-POMP, with A, B and V
defined above, and

Un = U = σ2(1, ψ1, ψ2, . . . , ψr−1)
t
(1, ψ1, ψ2, . . . , ψr−1).



Different POMPs can give the same model for Y1:N

There are other LG-POMP representations giving rise to the same
ARMA model.

When only one component of a latent process is observed, any model
giving rise to the same observed component is indistinguishable from
the data.

Here, the LG-POMP model has order r2 parameters and the ARMA
model has order r parameters, so we might expect there are many
ways to parameterize the ARMA model as a special case of the much
larger LG-POMP model.

The same can be true of non-Gaussian POMPs, but it is easier to see
in the Gaussian case.



The basic structural model and its LG-POMP
representation

The basic structural model is an econometric model used for
forecasting.

The basic stuctural model supposes that the observation process Y1:N
is the sum of a level (Ln), a trend (Tn) describing the rate of change
of the level, and a monthly seasonal component (Sn).

The model supposes that all these quantities are perturbed with
Gaussian white noise at each time point. So, we have the following
model equations

[BSM1] Yn = Ln + Sn + εn
[BSM2] Ln = Ln−1 + Tn−1 + ξn
[BSM3] Tn = Tn−1 + ζn
[BSM4] Sn = −

∑11
k=1 Sn−k + ηn

We suppose εn ∼ N [0, σ2ε ], ξn ∼ N [0, σ2ξ ], ζn ∼ N [0, σ2ζ ], and

ηn ∼ N [0, σ2η].



Two common special cases of the basic structural model

The local linear trend model is the basic structural model without
the seasonal component, {Sn}

The local level model is the basic structural model without either
the seasonal component, {Sn}, or the trend component, {Tn}. The
local level model is therefore a random walk observed with
measurement error.



Initial values for the basic structural model

To complete the model, we need to specify initial values.

We have an example of the common problem of failing to specify
initial values: these are not explained in the documentation of the R
implementation of the basic structural model, ‘StructTS‘. We could
go through the source code to find out what it does.

Incidentally, ‘?StructTS‘ does give some advice which resonates with
our experience earlier in the course that optimization for ARMA
models is often imperfect.

“Optimization of structural models is a lot harder than many of the
references admit. For example, the ‘AirPassengers’ data are considered in
Brockwell & Davis (1996): their solution appears to be a local maximum,
but nowhere near as good a fit as that produced by ‘StructTS’. It is quite
common to find fits with one or more variances zero, and this can include
sigma2eps.”



To put [BSM1-4] in the form of an LG-POMP model, we set

[BSM5] Xn = (Ln, Tn, Sn, Sn−1, Sn−2, . . . , Sn−10)
t.

Then, we have

[BSM6] Yn = (1, 0, 1, 0, 0, . . . , 0)Xn + εn,

Ln
Tn
Sn
Sn−1
Sn−2
...
Sn−10


=



1 1 0 0 0 . . . 0
0 1 0 0 0 . . . 0
0 0 −1 −1 −1 . . . −1
0 0 1 0 0 . . . 0
0 0 0 1 0 . . . 0
...

. . .
. . .

. . .
...

0 0 0 . . . 0 1 0





Ln−1
Tn−1
Sn−1
Sn−2
Sn−3
...
Sn−11


+



ξn
ζn
ηn
0
0
...
0


From [BSM5] and [BSM6], we can read off the matrices A, B, U and V in
the LG-POMP representation of the basic structural model.



Spline smoothing and its LG-POMP representation

Spline smoothing is a standard method to smooth scatter plots and
time plots. For example, smooth.spline in R.

A smoothing spline for an equally spaced time series y1:N collected
at times t1:N is the sequence x1:N minimizing the penalized sum of
squares (PSS), which is defined as

[SS1] PSS(x1:N ;λ) =
∑N

n=1(yn − xn)2 + λ
∑N

n=3(∆
2xn)2.

The spline is defined for all times, but here we are only concerned
with its value at the times t1:N .

Here, ∆xn = (1−B)xn = xn − xn−1.

smooth.spline


The smoothing parameter, λ, penalizes x1:N to prevent the spline
from interpolating the data.

If λ = 0, the spline will go through each data point, i.e, x1:N will
interpolate y1:N .

If λ =∞, the spline will be the ordinary least squares regression fit,

xn = α+ βn,

since ∆2(α+ βn) = 0.

Now consider the model,

[SS2]
Xn = 2Xn−1 −Xn−2 + εn, εn ∼ iid N [0, σ2/λ]
Yn = Xn + ηn ηn ∼ iid N [0, σ2].

Note that ∆2Xn = εn.



Constructing a linear Gaussian POMP (LG-POMP) model
from [SS2]

Question 9.8. {Xn, Yn} defined in [SS2] is not quite an LG-POMP model.
However, we can use {Xn} and {Yn} to build an LG-POMP model. How?



The joint density of X1:N and Y1:N in [SS2] can be written as

fX1:NY1:N (x1:N , y1:N ) = fX1:N
(x1:N ) fY1:N |X1:N

(y1:N |x1:N ).

Taking logs,

log fX1:NY1:N (x1:N , y1:N ) = log fX1:N
(x1:N )+log fY1:N |X1:N

(y1:N |x1:N ).

Suppose the initial conditions are irrelevant (either unknown
parameters or an improper Gaussian distribution with infinite
variance). Noting that {∆2Xn, n ∈ 1 : N} and {Yn −Xn, n ∈ 1 : N}
are collections of independent Normal random variables with mean
zero and variances σ2/λ and σ2 respectively, we have

[SS3] log fX1:NY1:N (x1:N , y1:N ;σ, λ) =

−1
2σ2

∑N
n=1(yn − xn)2 + −λ

2σ2

∑N
n=3(∆

2xn)2 + C.

In [SS3], C is a constant depending on σ and λ but not x1:N or y1:N .

Comparing [SS3] with [SS1], we see that maximizing the density
fX1:NY1:N (x1:N , y1:N ;σ, λ) as a function of x1:N is the same problem
as finding the smoothing spline by minimizing the penalized sum of
squares in [SS1].



For a Gaussian density, the mode (i.e., the maximum of the density)
is equal to the expected value. Therefore, we have

arg min
x1:N

PSS(x1:N ;λ), = arg max
x1:N

fX1:NY1:N (x1:N , y1:N ;σ, λ),

= arg max
x1:N

fX1:NY1:N (x1:N , y1:N ;σ, λ)

fY1:N (y1:N ;σ, λ)
,

= arg max
x1:N

fX1:N |Y1:N (x1:N | y1:N ;σ, λ),

= E
[
X1:N |Y1:N = y1:N ;σ, λ

]
.



The smoothing calculation for an LG-POMP model involves finding
the mean and variance of Xn given Y1:N = y1:N .

We conclude that the smoothing problem for this LG-POMP model is
the same as the spline smoothing problem defined by [SS1].

If you have experience using smoothing splines, this connection may
help you transfer that experience to POMP models.

Once you have experience with POMP models, this connection helps
you understand spline smoothers that are commonly used in many
applications.

For example, we might propose that the smoothing parameter λ could
be selected by maximum likelihood for the POMP model.



Question 9.9. Why do we use ∆2Xn = εn for our smoothing model?

Seeing that the smoothing spline arrives from the particular choice of
LG-POMP model in equation [SS2] could make you wonder why we
choose that model. Any ideas?

Even if this LG-POMP model is sometimes reasonable, presumably
there are other occasions when a different LG-POMP model would be
a superior choice for smoothing.



The Kalman filter

We find exact versions of the prediction, filtering and smoothing
formulas [MP4–10] for the linear Gaussian partially observed Markov
process (LG-POMP) model [LG1,LG2].

In the linear Gaussian case, the conditional probability density
functions in [MP4–10] are specified by the conditional mean and
conditional variance.



Review of the multivariate normal distribution

A random variable X taking values in RdX is multivariate normal
with mean µX and variance ΣX if we can write

X = HZ + µX ,

where Z is a vector of dX independent identically distributed N [0, 1]
random variables and H is a dX × dX matrix square root of ΣX , i.e.,

HHt
= ΣX .

The choice of H is not unique, and a matrix square root of this type
exists for any covariance matrix because covariance matrices are
positive semi-definite.
We write X ∼ N

[
µX ,ΣX

]
.

X ∼ N
[
µX ,ΣX

]
has a probability density function if and only if ΣX

is invertible. This density is given by

fX(x) =
1

(2π)dX/2|ΣX |
exp

{
−

(x− µX)
[
ΣX

]−1
(x− µX)t

2

}
.



Jointly multivariate normal vectors

X and Y are jointly multivariate normal if the combined vector

W =

(
X
Y

)
is multivariate normal. In this case, we write

µW =

(
µX
µY

)
, ΣW =

(
ΣX ΣXY

ΣY X ΣY

)
,

where
ΣXY = Cov(X,Y ) = E

[
(X − µX)(Y − µY )

t]
.



For jointly multivariate normal random variables X and Y , we have
the useful property that the conditional distribution of X given Y = y
is multivariate normal, with conditional mean and variance

[KF1]
µX|Y (y) = µX + ΣXY Σ−1Y

(
y − µY

)
,

ΣX|Y = ΣX − ΣXY Σ−1Y ΣY X .

We write this as

X |Y = y ∼ N
[
µX|Y (y) ,ΣX|Y

]
.

In general, the conditional variance of X given Y = y will depend on
y (remind yourself of the definition of conditional variance). In the
special case where X and Y are jointly multivariate normal, this
conditional variance happens not to depend on the value of y.

If ΣY is not invertible, to make [KF1] work we have to interpret Σ−1Y
as a generalized inverse.



Notation for the Kalman filter recursions

To write the Kalman filter, we define the following notation, Since the
system is Gaussian, the filtering and prediction distributions are defined by
their mean and variance.

[KF2]

Xn |Y1:n−1 = y1:n−1 ∼ N
[
µPn (y1:n−1), ΣP

n

]
,

Xn |Y1:n = y1:n ∼ N
[
µFn (y1:n), ΣF

n

]
,

Xn |Y1:N = y1:N ∼ N
[
µSn(y1:N ), ΣS

n

]
.

To relate this notation to the general POMP recursion formulas, given
data y1:N , we define the following terminology:

µPn (y1:n−1) = E
[
Xn |Y1:n−1 = y1:n−1

]
is the one-step prediction mean

for time tn. It is an arbitrary decision we have made to call this the
prediction for time tn (the time for which the prediction is being made)
rather than for time tn−1 (the time at which the prediction for time tn
becomes available).



ΣP
n (y1:n−1) = Var

(
Xn |Y1:n−1 = y1:n−1

)
is the one-step prediction

variance for time tn.

For a Gaussian model, this conditional variance does not depend on y1:n.
To make this terminology work for general POMP models we see later, we
include possible dependence on y1:n−1.

Other related quantities use the same notation:

µFn (y1:n) = E
[
Xn |Y1:n = y1:n

]
is the filter mean for time tn.

ΣF
n (y1:n) = Var

(
Xn |Y1:n = y1:n

)
is the filter variance for time tn.

µSn(y1:N ) = E
[
Xn |Y1:N = y1:N

]
is the smoothing mean for time tn.

ΣS
n(y1:N ) = Var

(
Xn |Y1:N = y1:N

)
is the smoothing variance for

time tn.



The Kalman matrix recursions

Applying the properties of linear combinations of Normal random variables,
we get the Kalman filter and prediction recursions:

[KF3] µPn+1(y1:n) = An+1µ
F
n (y1:n),

[KF4] ΣP
n+1 = An+1Σ

F
nA

t
n+1 + Un+1.

[KF5] ΣF
n =

(
[ΣP
n ]−1 + Bt

nV−1n Bn
)−1

.

[KF6] µFn (y1:n) = µPn (y1:n−1) + ΣF
nB

t
nV−1n

{
yn − BnµPn (y1:n−1)

}
.



Toward deriving the Kalman matrix recursions

The prediction recursions [KF3] and [KF4] are relatively easy to
demonstrate, but it is a good exercise to go through the algebra to
your own satisfaction.

A useful trick for the algebra is to notice that the conditioning
identities [KF1] for joint Gaussian random variables continue to hold
if left and right are both conditioned on some additional jointly
Gaussian variable, such as Y1:n−1.

[KF5] and [KF6] can be deduced by completing the square in an
expression for the joint density,

fXnYn|Y1:n−1
(xn, yn | y1:n−1)

and noticing that the marginal density of Xn given Y1:n is
proportional to the joint density, with a normalizing constant that
must allow the marginal density to integrate to one.



Question 9.10. Derive some or all of these equations.



These Kalman filter matrix equations are easy to code, and quick to
compute unless the dimension of the latent space is very large.

In numerical weather forecasting, with careful programming, they are
solved with latent variables having dimension dX ≈ 107.

A similar computation gives backward Kalman recursions. Putting the
forward and backward Kalman recursions together, as in [MP10], is
called Kalman smoothing.



Acknowledgments and License

These notes build on previous versions at
ionides.github.io/531w16 and ionides.github.io/531w18.

Licensed under the Creative Commons attribution-noncommercial
license, http://creativecommons.org/licenses/by-nc/3.0/.
Please share and remix noncommercially, mentioning its origin.

ionides.github.io/531w16
ionides.github.io/531w18
http://creativecommons.org/licenses/by-nc/3.0/

