
Chapter 10. Statistical methodology for nonlinear partially
observed Markov process models

Objectives

1 To introduce students to the pomp package

2 To explain how the components of a POMP model are encoded in
this package

3 To give some experience in the use and manipulation of pomp objects.

1 / 49

pomp
pomp

Time series analysis via nonlinear partially observed
Markov process (NL-POMP) models

Six problems of Bjornstad and Grenfell (Science, 2001): obstacles for
ecological modeling and inference via nonlinear mechanistic models:

1 Combining measurement noise and process noise.

2 Including covariates in mechanistically plausible ways.

3 Continuous time models.

4 Modeling and estimating interactions in coupled systems.

5 Dealing with unobserved variables.

6 Modeling spatial-temporal dynamics.

2 / 49

Applications of NL-POMP models

Modeling and inference via nonlinear mechanistic models arises
throughout engineering, the sciences (social, biological and physical)
and business.

In finance, we considered a stochastic volatility example in Chapter 1.

Infectious disease transmission dynamics can be highly nonlinear.
Transmission arises when an infected individual contacts a susceptible
individual, thus the rate of infections gets a nonlinear term:

Fraction of individuals infected
× Fraction of individuals susceptible to infection

Each new infection depletes the pool of susceptible individuals.
Without depletion of susceptibles, the fraction of individuals
susceptible to infection is constant and the epidemic grows
exponentially.

Data on infectious diseases are generally limited to diagnosed cases.
Much of the transmission dynamics cannot be directly observed.

3 / 49

Ecology and epidemiology as historical motivation for
NL-POMP methods

Infectious disease epidemiology has motivated developments in
statistical methodology and software for NL-POMP models.

Many other biological populations have similar nonlinearities: the
population grows exponentially until limited by some constraint, such
as a food resource or a predator. When the resource is used up, or
the predator becomes abundant, the population crashes. Then a new
cycle begins.

Ecological systems and epidemiological systems have much in
common. Disease systems can be relatively simple ecosystems with
just two species: host and pathogen.

4 / 49

An algorithmic approach to inference for POMP models

Recall our notation for partially observed Markov process models. The
latent process is Xn = X(tn) and we write X0:N = (X0, . . . , XN). The
observation at time tn is modeled by a random variable Yn. The one-step
transition density, fXn|Xn−1

(xn|xn−1; θ), together with the measurement
density, fYn|Xn

(yn|xn; θ) and the initial density, fX0(x0; θ), specify the
entire joint density via

fX0:N ,Y1:N
(x0:N , y1:N ; θ) = fX0(x0; θ)

N∏
n=1

fXn|Xn−1
(xn|xn−1; θ) fYn|Xn

(yn|xn; θ).

The marginal density for Y1:N , evaluated at the data, y1:N , is

fY1:N
(y1:N ; θ) =

∫
fX0:N ,Y1:N

(x0:N , y1:N ; θ) dx0:N .

5 / 49

Algorithmic notation matching the mathematical notation
for POMP models

To think algorithmically, we define some function calls that provide basic
elements specifying a POMP model.

rprocess(): a draw from the one-step transition distribution, with
density fXn|Xn−1

(xn|xn−1; θ).
dprocess(): evaluation of the one-step transition density,
fXn|Xn−1

(xn|xn−1; θ).
rmeasure(): a draw from the measurement distribution with density
fYn|Xn

(yn|xn; θ).
dmeasure(): evaluation of the measurement density,
fYn|Xn

(yn|xn; θ).
This follows the standard R notation, for example we expect rnorm to
draw from the normal distribution, and dnorm to evaluate the normal
density.

A general POMP model is fully specified by defining these basic
elements.

6 / 49

rprocess()
dprocess()
rmeasure()
dmeasure()
rnorm
dnorm

Specifying our own POMP model

The user will have to say what the basic elements are for their chosen
POMP model.

Algorithms can then use these basic elements to carry out inference
for the POMP model.

We will see that there are algorithms that can carry out
likelihood-based inference for this general POMP model specification.

7 / 49

What does it mean for statistical methodology to be
simulation-based?

Simulating random processes can be easier than evaluating their
transition probabilities.

Thus, we may be able to write rprocess() but not dprocess().

Simulation-based methods require the user to specify rprocess()

but not dprocess().

Plug-and-play, likelihood-free and equation-free are alternative
terms for simulation-based.

Much development of simulation-based statistical methodology has
occurred in the past decade.

8 / 49

rprocess()
dprocess()
rprocess()
dprocess()

The pomp R package for POMP models

pomp is an R package for data analysis using partially observed
Markov process (POMP) models.

Note the distinction: lower case pomp is a software package; upper
case POMP is a class of models.

pomp builds methodology for POMP models in terms of arbitrary
user-specified rprocess(), dprocess(), rmeasure(), and
dmeasure() functions.

Following modern practice, most methodology in pomp is
simulation-based, so does not require specification of dprocess().

pomp has facilities to help construct rprocess(), rmeasure(), and
dmeasure() functions for model classes of scientific interest.

pomp provides a forum for development, modification and sharing of
models, methodology and data analysis workflows.

pomp is available from CRAN or github.

9 / 49

pomp
pomp
pomp
rprocess()
dprocess()
rmeasure()
dmeasure()
pomp
dprocess()
pomp
rprocess()
rmeasure()
dmeasure()
pomp
pomp

Example: the Ricker model

The Ricker model is a basic model in population biology. We start
with a deterministic version and then add process noise and
measurement error.
The Ricker equation is a deterministic differential equation modeling
the dynamics of a simple population, including population growth and
resource depletion.

[R1] Pn+1 = r Pn exp(−Pn).

Here, Pn is the population density at time tn = n and r is a fixed
value (a parameter), related to the population’s intrinsic capacity to
increase.
Pn = log(r) is an equilibrium, meaning that if Pn = log(r) then
Pn+1 = Pn+2 = · · · = Pn. Another equilibrium is Pn = 0.
P is a state variable, r is a parameter.
If we know r and the initial condition P0, this deterministic Ricker
equation predicts the future population density at all times.
The initial condition, P0 is a special kind of parameter, an
initial-value parameter.

10 / 49

Adding stochasticity to the Ricker equation

We can model process noise by making the growth rate r into a
random variable.

For example, if we assume that the intrinsic growth rate is
log-normally distributed, P becomes a stochastic process governed by

[R2] Pn+1 = r Pn exp(−Pn + εn), εn ∼ Normal(0, σ2),

Here, the new parameter σ is the standard deviation of the noise
process ε.

11 / 49

Question 10.1. Does adding Gaussian noise mean we have a Gaussian
latent process model? What does it mean to say that the model for P0:N

described by equation [R2] is Gaussian?

12 / 49

Adding measurement error to the Ricker model

Let’s suppose that the Ricker model is our model for the dynamics of
a real population.

For most populations, outside of controlled experiments, we cannot
know the exact population density at any time, but only estimate it
through sampling.

Let’s model measurement error by treating the measurement yn,
conditional on Pn, as a draw from a Poisson distribution with mean
φPn. This corresponds to the model

[R3] Yn|Pn ∼ Poisson(φPn).

The parameter φ is proportional to the sampling effort.

13 / 49

Writing the Ricker model as a POMP model

For our standard definition of a POMP model (X0:N , Y0:N), we can
check that equations [R2] and [R3] together with the parameter P0

define a POMP model with

Xn = Pn (1)

Yn = Yn (2)

Following the usual POMP paradigm, Pn is a true but unknown
population density at time tn.

14 / 49

Working with the Ricker model in pomp

The R package pomp provides facilities for modeling POMPs, a
toolbox of statistical inference methods for analyzing data using
POMPs, and a development platform for implmenting new POMP
inference methods.

The basic data-structure provided by pomp is the object of class pomp,
alternatively known as a pomp object.

A pomp object is a container that holds real or simulated data and a
POMP model, possibly together with other information such as model
parameters, that may be needed to do things with the model and
data.

Let’s see what can be done with a pomp object.

First, if we haven’t already, we must install pomp. The package needs
access to code compilers to operate properly so you should check the
installation instructions at
https://kingaa.github.io/pomp/install.html

15 / 49

pomp
pomp
pomp
pomp
pomp
pomp
pomp
pomp
https://kingaa.github.io/pomp/install.html

For the following, we also load some other packages.

set.seed(594709947L)

require(ggplot2)

require(plyr)

require(reshape2)

require(pomp)

16 / 49

A pre-built pomp object encoding the Ricker model comes included
with the package. Load it by

ricker <- ricker()

We can plot the data:

plot(ricker)

17 / 49

pomp

We can simulate from the model:

simulated_ricker <- simulate(ricker)

What kind of object have we created?

class(simulated_ricker)

[1] "pomp"

attr(,"package")

[1] "pomp"

18 / 49

What is a generic function?

How does the concept of a generic function fit in with the following
related concepts,

object-oriented programming

assigning a class to an object.

overloading of functions or operators.

inheritance between classes, when one class extends another.

How does object-oriented programming work in R? How is this similar
or different from any other environment in which you have seen
object-oriented programming?

For current purposes, we don’t need to be experts in object-oriented
programming in R. However, we should be familiar with some R
object-orientated basics.

19 / 49

S3 classes (http://adv-r.had.co.nz/OO-essentials.html#s3)

S4 classes (http://adv-r.had.co.nz/S4.htm)

We should be able to recognize when code we are using employs S3
and S4 classes.

We should know where to turn to for help if we find ourselves needing
to know more details about how these work.

pomp uses the S4 class system, so that system is of more immediate
relevance. Many older R packages use S3 classes.

20 / 49

http://adv-r.had.co.nz/OO-essentials.html#s3
http://adv-r.had.co.nz/S4.htm
pomp

plot(simulated_ricker)

This pomp representation uses N for our variable P_n

Question 10.2. Why do we see more time series in the simulated pomp

object?

21 / 49

pomp
N
P_n
pomp

Different formats for simulation

We can turn a pomp object into a data frame:

y <- as.data.frame(ricker)

head(y,3)

time y

1 0 68

2 1 2

3 2 87

head(simulate(ricker,format="data.frame"))

time .id N e y

1 0 1 7.000000e+00 0.0000000 85

2 1 1 4.326721e-01 0.4163146 1

3 2 1 1.406521e+01 0.1141514 147

4 3 1 7.566248e-04 0.4348591 0

5 4 1 4.084348e-02 0.1893917 0

6 5 1 1.794869e+00 0.0237836 21

We can also run multiple simulations simultaneously:

x <- simulate(ricker,nsim=10)

class(x)

[1] "pompList"

attr(,"package")

[1] "pomp"

sapply(x,class)

[1] "pomp" "pomp" "pomp" "pomp" "pomp" "pomp" "pomp" "pomp"

[9] "pomp" "pomp"

x <- simulate(ricker,nsim=10,format="data.frame")

head(x,3)

time .id N e y

1 0 1 7 0 63

2 0 2 7 0 76

3 0 3 7 0 70

22 / 49

pomp

x <- simulate(ricker,nsim=9,format="data.frame",include.data=TRUE)

ggplot(data=x,aes(x=time,y=y,group=.id,color=(.id=="data")))+

geom_line()+guides(color=FALSE)+

facet_wrap(~.id,ncol=2)

23 / 49

The deterministic skeleton

The deterministic skeleton is a version of the POMP model without
process noise.

It is generated by trajectory().

y <- trajectory(ricker)

dim(y)

[1] 2 1 51

dimnames(y)

$variable

[1] "N" "e"

##

$rep

NULL

##

$time

NULL

24 / 49

trajectory()

plot(time(ricker),y["N",1,],type="l")

25 / 49

Working with model parameters I

ricker has parameters associated with it:

coef(ricker)

r sigma phi c N_0 e_0

44.70118 0.30000 10.00000 1.00000 7.00000 0.00000

These are the parameters at which the simulations and deterministic
trajectory computations above were done.

We can run these at different parameters:

theta <- coef(ricker)

theta[c("r","N.0")] <- c(5,3)

y <- trajectory(ricker,params=theta)

plot(time(ricker),y["N",1,],type="l")

26 / 49

ricker

Working with model parameters II

x <- simulate(ricker,params=theta)

plot(x,var="y")

27 / 49

Working with model parameters III

28 / 49

We can also change the parameters stored inside of ricker:

coef(ricker,c("r","N.0","sigma")) <- c(39,0.5,1)

coef(ricker)

plot(simulate(ricker),var="y")

r sigma phi c N_0 e_0 N.0

39.0 1.0 10.0 1.0 7.0 0.0 0.5

29 / 49

ricker

It is possible to work with more than one set of parameters at a time:

p <- parmat(coef(ricker),500)

p["r",] <- seq(from=2,to=40,length=500)

y <- trajectory(ricker,params=p,times=200:1000)

matplot(p["r",],y["N",,],pch=".",col='black',xlab='r',ylab='N',log='x')

This is a bifurcation diagram
(https://en.wikipedia.org/wiki/Bifurcation_diagram) for the
Ricker equation.

30 / 49

https://en.wikipedia.org/wiki/Bifurcation_diagram

Question 10.3. How do you interpret this bifurcation diagram?

What does it mean when the single line for small values of r splits
into a double line, around r = 0.8?

What does it mean when solid vertical lines appear, around r = 18?

A bifurcation diagram like this can only be computed for a
deterministic map. However, the bifurcation diagram for the
deterministic skeleton can be useful to help understand a stochastic
process. We’ll see an example later in this chapter.

31 / 49

Burn-in

Look at the R code for the bifurcation diagram. Notice that the first
200 iterations of the Ricker map are discarded, by setting
times=200:1000. This is a technique called burn-in.

This is used when aiming to simulate the steady state of a dynamic
system, ignoring transient behavior from initial conditions.

32 / 49

times=200:1000

Inference algorithms in pomp

pomp provides a wide range of inference algorithms. We’ll learn about
these in detail soon, but for now, let’s just look at some of their
general features.
The pfilter function runs a simple particle filter, which is a Monte
Carlo algorithm that can be used to evaluate the likelihood at a
particular set of parameters. One uses the Np argument to specify the
number of particles to use:

pf <- pfilter(ricker,Np=1000)

class(pf)

[1] "pfilterd_pomp"

attr(,"package")

[1] "pomp"

plot(pf)

logLik(pf)

[1] -157.7213

Note that pfilter returns an object of class pfilterd.pomp. This
is the general rule: inference algorithms return objects that are pomp

objects with additional information.
We can run the same particle filter computation again by doing

pf <- pfilter(pf)

logLik(pf)

[1] -157.9107

Because the particle filter is a Monte Carlo algorithm, we get a
slightly different estimate of the log likelihood.
By default, running pfilter on a pfilterd.pomp object causes the
computation to be re-run with the same parameters as before. Any
additional arguments we add override these defaults. This is the
general rule in pomp. For example, to repeat the particle filter with
only 100 particles:

pf <- pfilter(pf,Np=100)

logLik(pf)

[1] -160.3186

33 / 49

pomp
pomp
pfilter
Np
pfilter
pfilterd.pomp
pomp
pfilter
pfilterd.pomp
pomp

Building a custom pomp object

A real pomp data analysis begins with constructing one or more pomp

objects to hold the data and the model or models under consideration. We
illustrate this process a dataset of the abundance of the great tit (Parus
major in Wytham Wood, near Oxford (?).
First, we load and plot the data:

dat <- read.csv("parus.csv")

head(dat)

year pop

1 1960 148

2 1961 258

3 1962 185

4 1963 170

5 1964 267

6 1965 239

plot(pop~year,data=dat,type='o')

34 / 49

pomp
pomp
pomp

Let’s suppose that we want to fit the stochastic Ricker model discussed
above to these data.

The call to construct a pomp object is, naturally enough, pomp.

Documentation on this function can be had by doing ?pomp.

Do class?pomp to get documentation on the pomp class.

Learn about the various things you can do once you have a pomp

object by doing methods?pomp and following the links therein.

Read an overview of the package as a whole with links to its main
features by doing package?pomp.

A complete index of the functions in pomp is returned by the
command library(help=pomp).

The home page for the pomp project is
(http://kingaa.github.io/pomp); there you have access to the
complete source code, manuals, mailing lists, etc.

35 / 49

pomp
pomp
?pomp
class?pomp
pomp
pomp
methods?pomp
package?pomp
pomp
library(help=pomp)
pomp

The simplest pomp object has only the data:

parus <- pomp(dat,times="year",t0=1959)

The times argument specifies that the column labelled ”year” gives the
measurement times; t0 is the ”zero-time”, the time at which the state
process will be initialized. We’ve set it to one year prior to the beginning
of the data.

36 / 49

pomp
times
t0

We can now plot the data:

plot(parus)

37 / 49

Adding in the deterministic skeleton

We can add the Ricker model deterministic skeleton to the parus pomp

object. Since the Ricker model is a discrete-time model, its skeleton is a
map that takes Pn to Pn+1 according to the Ricker model equation

Pn+1 = r Pn exp(−Pn).

We provide this to pomp in the form of a Csnippet, a little snippet of C
code that performs the computation.

skel <- Csnippet("DN = r*N*exp(-N);")

We then add this to the pomp object:

parus <- pomp(parus,skeleton=map(skel),statenames="N",paramnames="r")

Note that we have to inform pomp as to which of the variables we’ve
referred to in skel is a state variable (statenames) and which is a
parameter (paramnames).

38 / 49

parus
pomp
pomp
Csnippet
pomp
pomp
skel
statenames
paramnames

With just the skeleton defined, we are in a position to compute the
trajectories of the deterministic skeleton at any point in parameter space.
For example,

traj <- trajectory(parus,params=c(N.0=1,r=12), format="data.frame")

ggplot(data=traj,aes(x=year,y=N))+geom_line()

39 / 49

Note that the dynamics become very different if the skeleton is
considered as the derivative of a differential equation rather than as a
discrete time map. It is harder to get chaotic dynamics in a
continuous time system.

parus2 <- pomp(parus,skeleton=vectorfield(skel),statenames="N",paramnames="r")

traj2 <- trajectory(parus2,params=c(N.0=1,r=12),format="data.frame")

ggplot(data=traj2,aes(x=year,y=N))+geom_line()

40 / 49

A note on terminology

If we know the state, x(t0), of the system at time t0, it makes sense
to speak about the entire trajectory of the system for all t > t0.
This is true whether we are thinking of the system as deterministic or
stochastic.
Of course, in the former case, the trajectory is uniquely determined by
x(t0), while in the stochastic case, only the probability distribution of
x(t), t > t0 is determined.
In pomp, to avoid confusion, we use the term “trajectory” exclusively
to refer to trajectories of a deterministic process. Thus, the
trajectory command iterates or integrates the deterministic
skeleton forward in time, returning the unique trajectory determined
by the specified parameters. When we want to speak about sample
paths of a stochastic process, we use the term simulation.
Accordingly, the simulate command always returns individual sample
paths from the POMP. In particular, we avoid “simulating a set of
differential equations”, preferring instead to speak of “integrating”
the equations, or “computing trajectories”.

41 / 49

pomp
trajectory
simulate

Adding in the process model simulator

We can add the stochastic Ricker model to parus by writing a
Csnippet that simulates one realization of the stochastic process, from
an arbitary time t to t+ 1, given arbitrary states and parameters:

stochStep <- Csnippet("

e = rnorm(0,sigma);

N = r*N*exp(-N+e);

")

pomp(parus,rprocess=discrete.time.sim(step.fun=stochStep,delta.t=1),

paramnames=c("r","sigma"),statenames=c("N","e")) -> parus

Note that in the above, we use the exp and rnorm functions from the
C language API for R
(https://cran.r-project.org/doc/manuals/R-exts.html)
In general any C function provided by R is available to you. pomp also
provides a number of C functions that are documented in the header
file, pomp.h, that is installed with the package.
See the Csnippet documentation (?Csnippet) to read more about
how to write them. 42 / 49

parus
exp
rnorm
https://cran.r-project.org/doc/manuals/R-exts.html
pomp
pomp.h
Csnippet
?Csnippet

At this point, we have what we need to simulate the stochastic Ricker
model.

sim <- simulate(parus,params=c(N.0=1,e.0=0,r=12,sigma=0.5),

format="data.frame")

plot(N~year,data=sim,type='o')

43 / 49

Adding in the measurement model and parameters

We complete the specification of the POMP by specifying the
measurement model. To obtain the Poisson measurement model
described above, we write two Csnippets. The first simulates:

rmeas <- Csnippet("pop = rpois(phi*N);")

The second computes the likelihood of observing pop birds given a
true density of N:

dmeas <- Csnippet("lik = dpois(pop,phi*N,give_log);")

Note the give_log argument. When this code is evaluated,
give_log will be set to 1 if the log likelihood is desired, and 0 else.

We add these specifications of rmeasure and dmeasure into the
pomp object:

pomp(parus,rmeasure=rmeas,dmeasure=dmeas,statenames=c("N"),

paramnames=c("phi")) -> parus

44 / 49

pop
N
give_log
give_log
rmeasure
dmeasure
pomp

To simulate, we must add some parameters to the pomp object:

coef(parus) <- c(N.0=1,e.0=0,r=20,sigma=0.1,phi=200)

sims <- simulate(parus,nsim=3,format="data.frame",

include.data=TRUE)

ggplot(data=sims,mapping=aes(x=year,y=pop))+geom_line()+

facet_wrap(~.id)

45 / 49

pomp

Exercise: Ricker model parameters

Fiddle with the parameters to try and make the simulations look more
like the data.

This will help you build some intuition for what the various
parameters do.

46 / 49

Exercise: reformulating the Ricker model

Reparameterize the Ricker model so that the scaling of P is explicit:

Pn+1 = r Pn exp

(
−Pn

K

)
.

Modify the pomp object we created above to reflect this
reparameterization.

Modify the measurement model so that

popn ∼ Negbin(φPn, k),

i.e., popn is negative-binomially distributed with mean φPt and
clumping parameter k.

See ?NegBinomial for documentation on the negative binomial
distribution and the R Extensions Manual section on distribution
functions
(https://cran.r-project.org/doc/manuals/R-exts.html) for
information on how to access these in C.

47 / 49

pomp
?NegBinomial
https://cran.r-project.org/doc/manuals/R-exts.html

Exercise: The Beverton-Holt model

Construct a pomp object for the Parus major data and the stochastic
Beverton-Holt model,

Pn+1 =
aPn

1 + b Pn
εn,

where a and b are parameters and

εt ∼ Lognormal(−1
2σ

2, σ2).

Assume the same measurement model as we used for the Ricker
model.

48 / 49

pomp

Acknowledgments and License

These notes build on previous versions at
ionides.github.io/531w16 and ionides.github.io/531w18.

Those notes draw on material developed for a short course on
Simulation-based Inference for Epidemiological Dynamics
(http://kingaa.github.io/sbied/) by Aaron King and Edward
Ionides, taught at the University of Washington Summer Institute in
Statistics and Modeling in Infectious Diseases, from 2015 through
2018.

Licensed under the Creative Commons attribution-noncommercial
license, http://creativecommons.org/licenses/by-nc/3.0/.
Please share and remix noncommercially, mentioning its origin.

49 / 49

ionides.github.io/531w16
ionides.github.io/531w18
http://kingaa.github.io/sbied/
http://creativecommons.org/licenses/by-nc/3.0/

