
Chapter 11. Dynamic models and their simulation by
Euler’s method

Objectives

1 Dynamic systems can often be represented in terms of flows between
compartments. We will develop the concept of a compartment
model for which we specify rates for the flows between compartments.

2 We develop deterministic and stochastic interpretations of a
compartment model.

3 We introduce Euler’s method to simulate from dynamic models, and
we apply it to both deterministic and stochastic compartment models.
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Compartment models

A compartment model is a model associated with a flow diagram
specifying how objects move between categories, called
compartments.

We will need equations to specify formally what the flow diagram
means.

One major applications of compartment models is pharmacokinetics,
the study of how pharmacological drugs enter the body, move between
organs, metabolize, and leave. The compartments may be the organs;
the flow is movement of the drug and its metabolites between organs.

Another major application of compartment models is epidemiology.
Compartments are groups of people; the flow is the movement of an
infectious disease through the population.
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Compartment models in epidemiology: the SIR model and
its generalizations

We will develop deterministic and stochastic representations of a
susceptible-infected-recovered (SIR) system, a fundamental class of models
for disease transmission dynamics. We will do this using notation which
generalizes to more complex systems (Bretó et al.; 2009).
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S : susceptible
I : infected and infectious
R : recovered and/or removed
C : cases
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We suppose that each arrow has an associated rate, so here there is a
rate µSI(t) at which individuals in S transition to I, and µIR at
which individuals in I transition to R.

To account for demography
(births/deaths/immigration/emmigration) we allow the possibility of
a source and sink compartment, which is not usually represented on
the flow diagram. We write µ•S for a rate of births into S, and
denote mortality rates by µS•, µI•, µR•.

The rates may be either constant or varying. In particular, for a
simple SIR model, the recovery rate µIR is a constant but the
infection rate has the time-varying form

µSI(t) = β I(t),

with β being the contact rate. For the simplest SIR model, ignoring
demography, we set

µ•S = µS• = µI• = µR• = 0.
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General notation for compartment models

To develop a systemtic notation, it turns out to be convenient to keep
track of the flows between compartments as well as the number of
individuals in each compartment. Let

NSI(t)

count the number of individuals who have transitioned from S to I by
time t. We say that NSI(t) is a counting process. A similarly
constructed process

NIR(t)

counts individuals transitioning from I to R. To include demography,
we could keep track of birth and death events by the counting
processes N•S(t), NS•(t), NI•(t), NR•(t).

For discrete population compartment models, the flow counting
processes are non-decreasing and integer valued.

For continuous population compartment models, the flow counting
processes are non-decreasing and real valued.
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Recovering compartment processes from counting
proceeses

The numbers of people in each compartment can be computed via
these counting processes. Ignoring demography, we have:

S(t) = S(0)−NSI(t)
I(t) = I(0) +NSI(t)−NIR(t)
R(t) = R(0) +NIR(t)

These equations represent something like conservation of mass, or
what goes in must come out.
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The ordinary differential equation (ODE) interpretation of
the SIR model

Together with initial conditions specifying S(0), I(0) and R(0), we just
need to write down ODEs for the flow counting processes. These are,

dNSI/dt = µSI(t)S(t),

dNIR/dt = µIR I(t).
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The simple continuous-time Markov chain interpretation of
the SIR model

Continuous-time Markov chains are the basic tool for building discrete
population epidemic models.

The Markov property lets us specify a model by the transition
probabilities on small intervals (together with the initial conditions).
For the SIR model, we have

P
[
NSI(t+ δ) =NSI(t) + 1

]
= µSI(t)S(t)δ + o(δ)

P
[
NSI(t+ δ) =NSI(t)

]
= 1− µSI(t)S(t)δ + o(δ)

P
[
NIR(t+ δ) =NIR(t) + 1

]
= µIR I(t)δ + o(δ)

P
[
NIR(t+ δ) =NIR(t)

]
= 1− µIR(t) I(t)δ + o(δ)

Here, we are using little o notation We write h(δ) = o(δ) to mean

limδ→0
h(δ)
δ = 0.
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Question 11.1. What is the link between little o notation and the
derivative?
Explain why

f(x+ δ) = f(x) + δg(x) + o(δ)

is the same statement as
df

dx
= g(x).

What considerations might help you choose which of these notations to
use?
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Question 11.2. From Markov chain to ODE. Find the expected value of
NSI(t+ δ)−NSI(t) and NIR(t+ δ)−NIR(t) given the current state,
S(t), I(t) and R(t). Take the limit as δ → 0 and show that this gives the
ODE model.
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Simple counting processes

A simple counting process is one which cannot count more than
one event at a time.

Technically, the SIR Markov chain model we have written is simple.
One may want to model the extra randomness resulting from multiple
simultaneous events: someone sneezing in a bus; large gatherings at
football matches; etc. This extra randomness may even be critical to
match the variability in data.

Later in the course, we may see situations where this extra
randomness plays an important role. Setting up the model using
counting processes, as we have done here, turns out to be useful for
this.
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Euler’s method for ordinary differential equations (ODEs)

Euler (1707-1783) wanted a numeric solution of an ODE
dx/dt = h(x) with an initial condition x(0).
He supposed this ODE has some true solution x(t) which could not
be worked out analytically. He therefore wished to approximate x(t)
numerically.
He initialized the numerical solution at the known starting value,

x̃(0) = x(0).

For k = 1, 2, . . . , he supposed that the gradient dx/dt is
approximately constant over the small time interval kδ ≤ t ≤ (k+ 1)δ.
Therefore, he defined

x̃
(

(k + 1)δ
)

= x̃(kδ) + δ h
(
x̃(kδ)

)
.

This only defines x̃(t) when t is a multiple of δ, but suppose x̃(t) is
constant between these discrete times.
We now have a numerical scheme, stepping forwards in time
increments of size δ, that can be readily evaluated by computer (or by
hand, if you are Euler). 12 / 36



Euler’s method versus other numerical methods

Mathematical analysis of Euler’s method says that, as long as the
function h(x) is not too exotic, then x(t) is well approximated by x̃(t)
when the discretization time-step, δ, is sufficiently small.

Euler’s method is not the only numerical scheme to solve ODEs.
More advanced schemes have better convergence properties, meaning
that the numerical approximation is closer to x(t). However, there are
3 reasons we choose to lean heavily on Euler’s method:

1 Euler’s method is the simplest (following the KISS principle).
2 Euler’s method extends naturally to stochastic models, both

continuous-time Markov chains models and stochastic differential
equation (SDE) models.

3 Close approximation of the numerical solutions to a continuous-time
model is less important than it may at first appear, a topic to be
discussed.
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Some comments on using continuous-time models and
discretized approximations

In some physical and engineering situations, a system follows an ODE
model closely. For example, Newton’s laws provide a very good
approximation to the motions of celestial bodies.

In many biological situations, ODE models only become close
mathematical approximations to reality at reasonably large scale. On
small temporal scales, models cannot usually capture the full scope of
biological variation and biological complexity.

If we are going to expect substantial error in using x(t) to model a
biological system, maybe the numerical solution x̃(t) represents the
system being modeled as well as x(t) does.

If our model fitting, model investigation, and final conclusions are all
based on our numerical solution x̃(t) (i.e., we are sticking entirely to
simulation-based methods) then we are most immediately concerned
with how well x̃(t) describes the system of interest. x̃(t) becomes
more important than the original model, x(t).
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Using numerical solutions as scientific models

It is important that a scientist fully describe the numerical model
x̃(t). Arguably, the main purpose of the original model x(t) is to give
a succinct description of how x̃(t) was constructed.

All numerical methods are, ultimately, discretizations.
Epidemiologically, setting δ to be a day, or an hour, can be quite
different from setting δ to be two weeks or a month. For
continuous-time modeling, we still require that δ is small compared to
the timescale of the process being modeled, so the choice of δ should
not play an explicit role in the interpretation of the model.

Putting more emphasis on the scientific role of the numerical solution
itself reminds you that the numerical solution has to do more than
approximate a target model in some asymptotic sense: the numerical
solution should be a sensible model in its own right.

15 / 36



Euler’s method for a discrete SIR model

Recall the simple continuous-time Markov chain interpretation of the
SIR model without demography:

P
[
NSI(t+ δ) =NSI(t) + 1

]
= µSI(t)S(t)δ + o(δ),

P
[
NIR(t+ δ) =NIR(t) + 1

]
= µIR I(t)δ + o(δ).

We look for a numerical solution with state variables S̃(kδ), Ĩ(kδ),
R̃(kδ).
The counting processes for the flows between compartments are
ÑSI(t) and ÑIR(t). The counting processes are related to the
numbers of individuals in the compartments by the same flow
equations we had before:

S̃(kδ) = S(0)− ÑSI(kδ)

Ĩ(kδ) = I(0) + ÑSI(kδ)− ÑIR(kδ)

R̃(kδ) = R(0) + ÑIR(kδ)

We focus on a numerical solution to NSI(t), since the same methods
can also be applied to NIR(t).
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Three different stochastic Euler solutions at times t = kδ

1 A Poisson approximation.

ÑSI(t+ δ) = ÑSI(t) + Poisson
[
µSI
(
Ĩ(t)

)
S̃(t) δ

]
,

where Poisson(µ) is a Poisson random variable with mean µ and

µSI
(
Ĩ(t)

)
= β Ĩ(t).

2 A binomial approximation with transition probabilities approximated
by rate times time.

ÑSI(t+ δ) = ÑSI(t) + Binomial
[
S̃(t), µSI

(
Ĩ(t)

)
δ
)
,

where Binomial(n, p) is a binomial random variable with mean np
and variance np(1− p).

3 A binomial approximation with exponential transition probabilities.

ÑSI(t+ δ) = ÑSI(t) + Binomial
[
S̃(t), 1− exp

{
− µSI

(
Ĩ(t)

)
δ
}]
.

Conceptually, it is simplest to think of (1) or (2). Numerically, it is
usually preferable to implement (3).

17 / 36



Compartment models as stochastic differential equations

The Euler method extends naturally to stochastic differential
equations (SDEs).

A natural way to add stochastic variation to an ODE dx/dt = h(x) is

dX/dt = h(X) + σ dB/dt

where {B(t)} is Brownian motion and so dB/dt is Brownian noise.

An Euler approximation X̃(t) is

X̃
(

(k + 1)δ
)

= X̃(kδ) + δ h
(
X̃(kδ)

)
+ σ
√
δ Zk

where Z1, Z2, . . . is a sequence of independent standard normal
random variables, i.e., Zk ∼ N [0, 1].

Although SDEs are often considered an advanced topic in probability,
the Euler approximation doesn’t demand much more than familiarity
with the normal distribution.
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Question 11.3.
(a) Write down a stochastic Euler method for an SDE representation of
the SIR model.

(b) Consider some difficulties that might arise with non-negativity
constraints, and propose some practical way one might deal with that
issue.

A useful method to deal with positivity constraints is to use Gamma
noise rather than Brownian noise (Bhadra et al.; 2011; Laneri et al.;
2010). SDEs driven by Gamma noise can be investigated by Euler
solutions simply by replacing the Gaussian noise by an appropriate
Gamma distribution.
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Conceptual exercise: Euler’s method vs Gillspie’s algorithm

A widely used, exact simulation method for continuous time Markov
chains is Gillspie’s algorithm. We do not put much emphasis on
Gillespie’s algorithm here. Why? When would you prefer an
implementation of Gillespie’s algorithm to an Euler solution?

Numerically, Gillespie’s algorithm is often approximated using
so-called tau-leaping methods. These are closely related to Euler’s
approach. Is it reasonable to call a suitable Euler approach a
tau-leaping method?
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Compartmental models in pomp

As an example that we can probe in some depth, we look at an isolated
outbreak of influenza that occurred in a boarding school for boys in
England (Anonymous; 1978). Let’s examine the data:

bsflu <- read.table("bsflu_data.txt")

head(bsflu,5)

## B C day

## 1978-01-22 1 0 1

## 1978-01-23 6 0 2

## 1978-01-24 26 0 3

## 1978-01-25 73 1 4

## 1978-01-26 222 8 5

The variable B refers to boys confined to bed and C to boys in
convalescence.
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Let’s restrict our attention for the moment to the B variable.
Assume for now that that B indicates the number of boys confined to
bed the preceding day and that the disease follows the simple SIR
model.
We seek to estimate the parameters of the SIR and then to decide
whether or not the SIR model is an adequate description of these
data.
Note: µIR is often called γ and µSI(t) is called λ(t).
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Viewing the SIR as a POMP model

The unobserved state variables, in this case, are the numbers of
individuals, S, I, R in the S, I, and R compartments, respectively.

It is reasonable in this case to view the population size
N = S + I +R, as fixed.

The numbers that actually move from one compartment to another
over any particular time interval are modeled as stochastic processes.

In this case, we’ll assume that the stochasticity is purely
demographic, i.e., that each individual in a compartment at any given
time faces the same risk of exiting the compartment.
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Implementing the SIR POMP model in pomp

We saw three different Euler methods that could be used for an
rprocess Csnippet, and we use method (3) above.

The number of individuals, ∆NSI , moving from S to I over interval
∆t as

∆NSI ∼ Binomial
(
S, 1− e−λ∆t

)
,

and the number moving from I to R as

∆NIR ∼ Binomial
(
I, 1− e−γ∆t

)
.

sir_step <- Csnippet("

double dN_SI = rbinom(S,1-exp(-Beta*I/N*dt));

double dN_IR = rbinom(I,1-exp(-gamma*dt));

S -= dN_SI;

I += dN_SI - dN_IR;

R += dN_IR;

")

24 / 36

pomp
rprocess


Initial conditions

At day zero, we’ll assume that I = 1 and R = 0, but we don’t know how
big the school is, so we treat N as a parameter to be estimated and let
S(0) = N − 1. Thus an initializer Csnippet is

sir_rinit <- Csnippet("

S = N-1;

I = 1;

R = 0;

")

We fold these Csnippets, with the data, into a pomp object thus:

pomp(subset(bsflu,select=c(day,B)),

time="day",t0=0,rprocess=euler(sir_step,delta.t=1/6),

rinit=sir_rinit,paramnames=c("N","Beta","gamma"),

statenames=c("S","I","R")) -> sir

Here, we specify the pomp object one piece at a time. Once pieces are
debugged, you can specify them all at the same time.
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Toward a measurement model

Now let’s assume that the case reports, B, result from a process by which
new infections result in confinement with probability ρ, which we can think
of as the probability that an infection is severe enough to be noticed by
the school authorities. Since confined cases have, presumably, a much
lower transmission rate, let’s treat B as being a count of the number of
boys who have moved from I to R over the course of the past day. We
need a variable to track this. Let’s modify our Csnippet above, adding a
variable H to track the incidence. We’ll then replace the rprocess with
the new one.

sir_step <- Csnippet("

double dN_SI = rbinom(S,1-exp(-Beta*I/N*dt));

double dN_IR = rbinom(I,1-exp(-gamma*dt));

S -= dN_SI;

I += dN_SI - dN_IR;

R += dN_IR;

H += dN_IR;

")
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sir_rinit <- Csnippet("

S = N-1;

I = 1;

R = 0;

H = 0;

")

pomp(sir,rprocess=euler(sir_step,delta.t=1/6),rinit=sir_rinit,

paramnames=c("Beta","gamma","N"),

statenames=c("S","I","R","H")) -> sir
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Now, we’ll model the data, B, as a binomial process,

Bt ∼ Binomial (H(t)−H(t− 1), ρ) .

But we have a problem, since at time t, the variable H we’ve defined will
contain H(t), not H(t)−H(t− 1). We can overcome this by telling pomp
that we want H to be set to zero immediately following each observation.
We do this by setting the accumvars argument to pomp:

pomp(sir,accumvars="H") -> sir

Now, to include the observations in the model, we must write both a
dmeasure and an rmeasure component:

dmeas <- Csnippet("lik = dbinom(B,H,rho,give_log);")

rmeas <- Csnippet("B = rbinom(H,rho);")

and put these into our pomp object:

sir <- pomp(sir,rmeasure=rmeas,dmeasure=dmeas,

statenames="H",paramnames="rho")
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Some intuition about plausible parameter values

We need some parameters as a starting point, so we can perform
some simulations to check whether things are working.

In the data, it looks like there were a total of 1540 infections, so
the population size, N , must be somewhat in excess of this number.

We can use the final-size equation

R0 = − log (1− f)

f
,

where f = R(∞)/N is the final size of the epidemic.

In epidemiology, R0 is the average number of secondard cases per
primary case in a fully susceptible population. The font distinguishes
it from the latent state R.

We suppose R0 ≈ 1.5, so f ≈ 0.6 and N ≈ 2600.

If the infectious period is roughly 1 day, then 1/γ ≈ 1 da and
β = γR0 ≈ 1.5 da−1.
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sims <- simulate(sir,params=c(Beta=1.5,gamma=1,rho=0.9,N=2600),

nsim=20,format="data.frame",include=TRUE)

ggplot(sims,mapping=aes(x=day,y=B,group=.id,color=.id=="data"))+

geom_line()+guides(color=FALSE)
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Question 11.4. Explore the SIR model by simulation. Fiddle with the
parameters to see if you can’t find parameters for which the data are a
more plausible realization.
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The SIR model to include latency: The SEIR model

Below is a diagram of the so-called SEIR model. This differs from the SIR
model in that infected individuals must pass a period of latency before
becoming infectious.
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Question 11.5. Modify the codes above to construct a pomp object
containing the flu data and an SEIR model. As before,
µ•S = µS• = µE•µI•µR• = 0 is appropriate here. Perform simulations as
above and adjust parameters to get a sense of whether improvement is
possible by including a latent period.

Focus on homework before attempting extended questions from the
nodes. Initially, think about whether in principle you know how to
proceed.
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Rethinking the boarding-school flu data

In the preceding, we assumed that Bt represents the number of boys
sent to bed on day t.

In fact, as described by Anonymous (1978), Bt represents the total
number of boys in bed on day t.

Boys were confined for more than one day, so the data count each
infection multiple times.

Additionally, we learn from Anonymous (1978) that N = 763 boys
were at risk and 512 boys in total spent between 3 and 7 days away
from class (either in bed or convalescent).

The data on the number of boys, Ct, convalescent at day t therefore
informs convalescent time.

Since 1540 boy-da/512 boy ≈ 3 da, we know that the average
duration spent in bed was 3 days and, since

∑
tCt = 924, we can

infer that the average time spent convalescing was
924 boy-da/512 boy ≈ 1.8 da.
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Question 11.6. Formulate a model with both confinement and
convalescent stages. Implement it in pomp using a compartmental model
like that diagrammed below.

S I R1 R2
-

µSI

-

µIR1

-

µR1R2

You will have to give some thought to just how to model the relationship
between the data (B and C) and the state variables. How many
parameters can reasonably be fixed? How many must be estimated?
Obtain some ballpark estimates of the parameters and simulate to see if
you can plausibly explain the data as a realization of this model.
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Bretó, C., He, D., Ionides, E. L. and King, A. A. (2009). Time series
analysis via mechanistic models, Annals of Applied Statistics
3(1): 319–348.

Laneri, K., Bhadra, A., Ionides, E. L., Bouma, M., Yadav, R., Dhiman, R.
and Pascual, M. (2010). Forcing versus feedback: Epidemic malaria and
monsoon rains in NW India, PLoS Comput. Biol. 6: e1000898.

36 / 36


	References

