
Chapter 12. Practical likelihood-based inference for POMP
models

Objectives

1 Understanding the simplest particle filter and how it enables Monte
Carlo solution of the POMP filtering and prediction recursions and
computation of a Monte Carlo evaluation of the likelihood.

2 Using the particle filter to visualize and exploring likelihood surfaces

3 Understanding how iterated filtering algorithms carry out repeated
particle filtering operations, with randomly perturbed parameter
values, in order to maximize the likelihood.

4 Carrying out likelihood-based inferences for dynamic models using
simulation-based statistical methodology in the R package pomp,
demonstrated by fitting an SIR model to a boarding school flu
outbreak.
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Indirect specification of the statistical model via a
simulation procedure

For simple statistical models, we may describe the model by explicitly
writing the density function fY1:N

(y1:N ; θ). One may then ask how to
simulate a random variable Y1:N ∼ fY1:N

(y1:N ; θ).

For many dynamic models it is convenient to define the model via a
procedure to simulate the random variable Y1:N . This implicitly
defines the corresponding density fY1:N

(y1:N ; θ). For a complicated
simulation procedure, it may be difficult or impossible to write down
fY1:N

(y1:N ; θ) exactly.

It is important for us to bear in mind that the likelihood function
exists even when we don’t know what it is! We can still talk about
the likelihood function, and develop numerical methods that take
advantage of its statistical properties.
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Special case: a deterministic unobserved state process

Suppose Xn = xn(θ) is a known function of θ for each n.
Equivalently, consider fitting the deterministic skeleton for a POMP.
What is the likelihood?

Since the distribution of the observable random variable, Yn, depends
only on Xn and θ, and since, in particular Ym and Yn are independent
given Xm and Xn, we have

L(θ) =
∏
n

fYn|Xn
(y∗n |xn(θ) ; θ)

or
`(θ) = logL(θ) =

∑
n

log fYn|Xn
(y∗n |xn(θ) ; θ).

This situation includes linear or nonlinear regression: with a Gaussian
measurement model, maximum likelihood corresponds to least
squares.
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The skeleton of an SIR compared to the flu dataset

Minimizing a sum of squared errors for the skeleton is a simple
comparison. We want to do better, and fit the full POMP model.
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An ineffective method: Likelihood by direct simulation

To motivate the particle filter, we first introduce a simpler method which
usually does not work on anything but very short time series. We calculate:

L(θ) = fY1:N
(y1:N ; θ)

=

∫
x0:N

fX0(x0 ; θ)

N∏
n=1

fYn|Xn
(yn |xn ; θ) fXn|Xn−1

(xn|xn−1 ; θ) dx0:N

= E

[
N∏

n=1

fYn|Xn
(yn |Xn ; θ)

]

≈ 1

J

J∑
j=1

N∏
n=1

fYn|Xn
(yn |Xn,j ; θ)

where we have J independent simulated trajectories {Xnj , n = 1, . . . , N},
and ≈ is justified by the laws of large numbers.

Question 12.1. Why is this approach ineffective unless time series is very
short?
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The particle filter

Fortunately, we can compute the likelihood for a POMP model much
more efficiently by using Monte Carlo representations of the
prediction and filtering recursions.

This gives the particle filter algorithm, also known as sequential
Monte Carlo (SMC):

1 Suppose XF
n−1,j , j = 1, . . . , J is a set of J points drawn from the

filtering distribution at time n− 1.

2 We obtain a sample XP
n,j of points drawn from the prediction

distribution at time t by simply simulating the process model:

XP
n,j ∼ process(XF

n−1,j , θ), j = 1, . . . , J.

3 Having obtained xPn,j , we obtain a sample of points from the filtering

distribution at time tn by resampling from
{
XP

n,j , j ∈ 1 : J
}

with
weights

wn,j = fYn|Xn
(y∗n|XP

n,j ; θ).
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The likelihood via the particle filter

The Monte Carlo principle tells us that the conditional likelihood

Ln(θ) = fYn|Y1:n−1
(y∗n|y∗1:n−1 ; θ)

=

∫
fYn|Xn

(y∗n|xn ; θ) fXn|Y1:n−1
(xn|y∗1:n−1 ; θ) dxn

is approximated by

L̂n(θ) ≈ 1

N

∑
j

fYn|Xn
(y∗n|XP

n,j ; θ).

The full log likelihood then has approximation

`(θ) = logL(θ)

=
∑
n

logLn(θ)

≈
∑
n

log L̂n(θ).
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Recall the SIR model from Chapter 11

sims <- simulate(sir,params=c(Beta=1.8,mu_IR=1,rho=0.9,N=2600),

nsim=20,format="data.frame",include=TRUE)

ggplot(sims,mapping=aes(x=day,y=B,group=.id,color=.id=="data"))+

geom_line()+guides(color=FALSE)
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Sequential Monte Carlo in pomp

In pomp, the basic particle filter is implemented in the command pfilter.
We must choose the number of particles to use by setting the Np

argument.

pf <- pfilter(sir,Np=5000,params=c(Beta=2,mu_IR=1,rho=0.8,N=2600))

logLik(pf)

## [1] -75.08432

Running a few particle filters gives an estimate of Monte Carlo variability:

pf <- replicate(10,

pfilter(sir,Np=5000,params=c(Beta=2,mu_IR=1,rho=0.8,N=2600))

)

print(ll <- sapply(pf,logLik))

## [1] -73.60527 -77.57437 -76.89373 -81.53621 -75.17748

## [6] -74.89806 -78.67495 -71.34814 -75.82188 -79.11634
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Unbiasedness of the particle filter likelihood estimate

A theoretical property of the particle filter is that it gives us an
unbiased Monte Carlo estimate of the likelihood.

This theoretical property, combined with Jensen’s inequality and the
observation that log(x) is a concave function, ensures that the
average of the log likelihoods from many particle filter replications will
have negative bias as a Monte Carlo estimator of the log likelihood.

For other quantities, the particle filter has bias which decreases to
zero as the number of particles increases. It is a special property of
the likelihood that the bias in this case is zero.
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Averaging log likelihood estimates

The unbiased property of the particle filter for the likelihood suggests
we average log likelihood estimates on the natural scale.

After returning to the log scale, a standard error is available from the
delta method.

logmeanexp() does these computations.

logmeanexp(ll,se=TRUE)

## se

## -73.490733 1.707026
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Graphing the likelihood function: The likelihood surface

We can think of the geometric surface defined by the likelihood
function.

If Θ is two-dimensional, then the surface `(θ) has features like a
landscape: local maxima of `(θ) are peaks, local minima are valleys,
peaks may be separated by a valley or may be joined by a ridge.

Moving along a ridge, you may be able to go from one peak to the
other without losing much elevation. Narrow ridges can be easy to
fall off, and hard to get back on to.

In higher dimensions, one can still think of peaks and valleys and
ridges. However, as the dimension increases it quickly becomes hard
to imagine the surface.

To get an idea of what the likelihood surface looks like in the
neighborhood of the default parameter set supplied by sir, we can
construct a likelihood slice. A slice varies one parameter at a time,
fixing the others.
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Parallel statistical computing in R

Parallelization is helpful for computational statistics. You can tell R to
access multiple processors on your machine.

library(doParallel)

registerDoParallel()

library(doRNG)

registerDoRNG(3899882)

registerDoRNG sets up a parallel random number generator.

Most statistical computing is embarrassingly parallel.

This means we simply have to learn to use a parallel for loop via
foreach()
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Slicing in the β and µIR directions

p <- sliceDesign(

c(Beta=2,mu_IR=1,rho=0.8,N=2600),

Beta=rep(seq(from=0.5,to=4,length=40),each=3),

mu_IR=rep(seq(from=0.5,to=2,length=40),each=3))

foreach (theta=iter(p,"row"), .packages='pomp',

.combine=rbind,.inorder=FALSE) %dopar% {
pfilter(sir,params=unlist(theta),Np=5000) -> pf

theta$loglik <- logLik(pf)

theta

} -> p

sliceDesign() builds a dataframe where each row is a parameter
vector.

foreach() carries out particle filters for each row, distributed across
processors
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Question 12.2. Write down the definition of a likelihood slice in
mathematical notation.

Question 12.3. Explain the difference between a likelihood slice and a
likelihood profile,
(a) from a computational perspective.

(b) from the perspective of constructing confidence intervals and
hypothesis tests.
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A two-dimensionsional likelihood cross-section

Slices offer a limited perspective on the geometry of the likelihood
surface. With two parameters, we can evaluate the likelihood at a
grid of points and visualize the surface.

We compute a likelihood cross-section in the β and µIR directions.

expand.grid(Beta=seq(from=1,to=4,length=50),

mu_IR=seq(from=0.7,to=3,length=50),

rho=0.8,

N=2600) -> p

foreach (theta=iter(p,"row"),.combine=rbind,.packages='pomp',

.inorder=FALSE) %dopar% {
pfilter(sir,params=unlist(theta),Np=5000) -> pf

theta$loglik <- logLik(pf)

theta

} -> p
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pp <- mutate(p,loglik=ifelse(loglik>max(loglik)-100,loglik,NA))

ggplot(data=pp,mapping=aes(x=Beta,y=mu_IR,z=loglik,fill=loglik))+

geom_tile(color=NA)+

scale_fill_gradient()+

geom_contour(color='black',binwidth=3)+

labs(x=expression(beta),y=expression(mu[IR]))
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Likelihood maximization

We saw above that the default parameter set for the ’bsflu’ pomp
object is not particularly close to the MLE.

One approach to find the MLE is to apply an optimizer to the particle
filter estimate of the likelihood.

There are many optimization algorithms to choose from, and many
implemented in R.

Three issues arise immediately (discussed more on following slides):

1 The particle filter gives us a stochastic estimate of the likelihood.

2 Lack of derivatives.

3 Constrained parameters.
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1. The particle filter gives us a stochastic estimate of the
likelihood

We can reduce this variability by making the number of particles, Np,
larger. However, we cannot make it go away.

We can use deterministic optimization, by fixing the seed of the
pseudo-random number generator, a side effect is that the objective
function can become jagged, with many small local maxima and
minima.

If we use stochastic optimization, the underlying surface may be
smoother but we see it only with Monte Carlo noise.

This is the trade-off between a noisy and a rough objective function.
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2. Lack of derivatives

Because the particle filter gives us just an estimate of the likelihood
and no information about the derivative, we must choose an
algorithm that is “derivative-free”.

There are many such, but we can expect less efficiency than would be
possible with derivative information.

Note that finite differencing (i.e., a direct numerical estimate of the
derivative) is not an especially promising way of constructing
derivatives in the presence of Monte Carlo noise.
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3. Constrained parameters

For the boarding school flu example, the parameters are constrained
to be positive, and ρ < 1.

Such constraints are common, especially for rate parameters.

We must select an optimizer that can solve this constrained
maximization problem, or figure out some of way of turning it into
an unconstrained maximization problem.

For the latter, we transform the parameters onto a scale on which
there are no constraints.
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Cautions about parameter estimation for dynamic models

When we propose a mechanistic model for a system, we have some
idea of what we intend parameters to mean. In our epidemiology
example, we interpret parameters as a reporting rate, a contact rate
between individuals, an immigration rate, a duration of immunity, etc.

The data and the parameter estimation procedure do not know about
our intended interpretation of the model. Parameter estimates
statistically consistent with the data may be absurd according to the
scientific reasoning used to build the model.

This can arise as a consequence of weak identifiability, or it can be a
warning that the data show our model does not represent reality in
the way we had hoped.

Fixing some parameters at known, scienficially reasonable values is
tempting. However, this can suppress warnings that the data were
giving about weaknesses in the model, or in our biological
interpretation of it.
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An iterated filtering algorithm (IF2)

We use the IF2 algorithm of Ionides et al. (2015).

A particle filter is carried out with the parameter vector for each
particle doing a random walk.

At the end of the time series, the collection of parameter vectors is
recycled as starting parameters for a new particle filter with a smaller
random walk variance.

Theoretically, this procedure converges toward the region of
parameter space maximizing the maximum likelihood.

Empirically, we can test this claim on examples.
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IF2 algorithm input and output

model input: Simulators for fX0(x0; θ) and fXn|Xn−1
(xn|xn−1; θ);

evaluator for fYn|Xn
(yn|xn; θ); data, y∗1:N

algorithmic parameters: Number of iterations, M ; number of particles,
J ; starting parameter swarm, {Θ0

j , j = 1, . . . , J}; perturbation density,
hn(θ|ϕ;σ); perturbation scale, σ1:M

output: Final parameter swarm, {ΘM
j , j = 1, . . . , J}

This algorithm requires rprocess but not dprocess. It is
simulation-based, also known as plug-and-play.
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IF2 algorithm pseudocode

1. For m in 1:M
2. ΘF,m

0,j ∼ h0(θ|Θ
m−1
j ;σm) for j in 1:J

3. XF,m
0,j ∼ fX0(x0; ΘF,m

0,j ) for j in 1:J
4. For n in 1:N
5. ΘP,m

n,j ∼ hn(θ|ΘF,m
n−1,j , σm) for j in 1:J

6. XP,m
n,j ∼ fXn|Xn−1

(xn|XF,m
n−1,j ; ΘP,m

j ) for j in 1:J

7. wm
n,j = fYn|Xn

(y∗n|X
P,m
n,j ; ΘP,m

n,j ) for j in 1:J

8. Draw k1:J with P [kj = i] = wm
n,i

/∑J
u=1w

m
n,u

9. ΘF,m
n,j = ΘP,m

n,kj
and XF,m

n,j = XP,m
n,kj

for j in 1:J
10. End For
11. Set Θm

j = ΘF,m
N,j for j in 1:J

12. End For
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Comments on the IF2 algorithm

The N loop (lines 4 through 10) is a basic particle filter applied to a
model with stochastic perturbations to the parameters.

The M loop repeats this particle filter with decreasing perturbations.

The superscript F in ΘF,m
n,j and XF,m

n,j denote solutions to the filtering
problem, with the particles j = 1, . . . , J providing a Monte Carlo
representation of the conditional distribution at time n given data
y∗1:n for filtering iteration m.

The superscript P in ΘP,m
n,j and XP,m

n,j denote solutions to the
prediction problem, with the particles j = 1, . . . , J providing a Monte
Carlo representation of the conditional distribution at time n given
data y∗1:n−1 for filtering iteration m.

The weight wm
n,j gives the likelihood of the data at time n for particle

j in filtering iteration m.
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Choosing the algorithmic settings for IF2

The starting parameter swarm, {Θ0
j , j = 1, . . . , J}, usually consists of

J identical replications of some starting parameter vector.
J should be sufficient for particle filtering. By the last iteration
(m = M) one should not have effective sample size close to 1.
Perturbations are usually chosen to be Gaussian, with σm being a
scale factor for iteration m:

hn(θ|ϕ;σ) ∼ N [ϕ, σ2mVn].

Vn is usually taken to be diagonal,

Vn =


v21,n 0 0 → 0

0 v22,n 0 → 0

0 0 v23,n → 0

↓ ↘ ↓
0 0 0 → v2p,n

 .

If θi is a parameter that affects the dynamics or observations
throughout the timeseries, it is called a regular parameter (RP) and
we can set vi,n = vi. 28 / 65



Initial value parameters (IVPs)

If θj is a parameter that affects only the initial conditions of the
dynamic model, it is called an initial value parameter (IVP) and it
is appropriate to specify

vj,n =

{
vj if n = 0
0 if n > 0

If θk is a break-point parameter that models how the system changes
at time tq then θk is like an IVP at time tq and it is appropriate to
specify

vj,n =

{
vj if n = q
0 if n 6= q
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Choosing the cooling schedule

σ1:M is called a cooling schedule, following a thermodynamic
analogy popularized by simulated annealing. As σm becomes small,
the system cools toward a freezing point.
The freezing point should be close to the lowest-energy state of the
system, i.e., the MLE.
We aim to transform parameters so that (on the estimation scale)
they are unconstrained and have uncertainty on the order of 1 unit.
Usually, we do a logarithmic transformation of positive parameters
and a logistic transformation of [0, 1] valued parameters.
On this scale, it is surprisingly often effective to take

vi = 0.02 for regular parameters (RPs)
vj = 0.1 for initial value parameters (IVPs)

We suppose that σ1 = 1, since the scale of the parameters is
addressed by the matrix Vn . Early on in an investigation, one might
take M = 100 and σM = 0.1. Later on, consideration of diagnostic
plots may suggest refinements.
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Applying IF2 to a boarding school influenza outbreak

We redevelop a model for the boarding school flu data, as template
for the cases studies to follow.

We use an SIR1R2R3 model with state
X(t) = (S(t), I(t), R1(t), R2(t), R3(t)) giving the number of
individuals in the susceptible and infectious categories, and three
stages of recovery.

The recovery stages, R1, R2 and R3, are all modeled to be
non-contagious.

R1 counts individuals who are bed-confined if they show symptoms;
R2 counts individuals who are convalescent if they showed symptoms;
R3 counts recovered individuals who have returned to schoolwork if
they were symtomatic.

We use abbreviations µIR = µIR1 , µR1 = µR1R2 , µR2 = µR2R3 .
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bsflu_rprocess <- "

double dN_SI = rbinom(S,1-exp(-Beta*I*dt));

double dN_IR1 = rbinom(I,1-exp(-dt*mu_IR));

double dN_R1R2 = rbinom(R1,1-exp(-dt*mu_R1));

double dN_R2R3 = rbinom(R2,1-exp(-dt*mu_R2));

S -= dN_SI;

I += dN_SI - dN_IR1;

R1 += dN_IR1 - dN_R1R2;

R2 += dN_R1R2 - dN_R2R3;

"

We do not need a representation of R3 since the total population size is
fixed at P = 763 and hence R3(t) = P − S(t)− I(t)−R1(t)−R2(t).
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The measurement model

The observation on day n of the observed epidemic (with n = 1 being
22 January) has two measurements: the numbers of children who are
bed-confined and convalescent.

To start simply, we will just take Yn = Bn with
Bn ∼ Poisson(ρR1(tn)).

Here, ρ is a reporting rate corresponding to the chance of being
symptomatic.

Multivariate measurement models can be coded in pomp.
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bsflu_dmeasure <- "

lik = dpois(B,rho*R1+1e-10,give_log);

"

bsflu_rmeasure <- "

B = rpois(rho*R1+1e-10);

"

The 1e-10 tolerance value stops the code crashing when all particles
have R1=0.
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Initial conditions

The index case for the epidemic was proposed to be a boy returning
to Britain from Hong Kong, who was reported to have a transient
febrile illness from 15 to 18 January.

It would therefore be reasonable to initialize the epidemic with
I(t0) = 1 at t0 = −6.

This is tricky to reconcile with the rest of the data; we simply
initialize with I(t0) = 1 at t0 = 0.

bsflu_rinit <- "

S=762;

I=1;

R1=0;

R2=0;

"
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Limitations and weaknesses

All models have limitations and weaknesses. Writing down and fitting
a model is a starting point for data analysis, not an end point. In
particular, one should try model variations.

One could include a latency period for infections.

One could modify the model to give a better description of the
bed-confinement and convalescence processes.

Ten individuals received antibiotics for secondary infections, and they
had longer bed-confinement and convalescence times. A model
including the convalescence data might have to address this.
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bsflu_statenames <- c("S","I","R1","R2")

bsflu_paramnames <- c("Beta","mu_IR","rho","mu_R1","mu_R2")

The names are needed only for compiling the Csnippets, but writing
them down also helps clarify the map from the mathematical
representation of the model to the computational representation.
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bsflu_data <- read.table("bsflu_data.txt")

bsflu2 <- pomp(

data=subset(bsflu_data,select=c(day,B)),

times="day",

t0=0,

rprocess=euler(

step.fun=Csnippet(bsflu_rprocess),

delta.t=1/12),

rmeasure=Csnippet(bsflu_rmeasure),

dmeasure=Csnippet(bsflu_dmeasure),

partrans=parameter_trans(

log=c("Beta","mu_IR","mu_R1","mu_R2"),

logit="rho"),

statenames=bsflu_statenames,

paramnames=bsflu_paramnames,

rinit=Csnippet(bsflu_rinit)

)
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Controlling the run time

To develop and debug code, we want a version that runs extra quickly.
Setting run_level=1 gives a low number of particles, Np, etc.
For this model and data, Np=5000 and Nmif=200 are empirically
around the minimum to get stable results with an error in the
likelihood of order 1 log unit for this example. This is done by
run_level=2.
For more precise time-consuming computations, run_level=3.

run_level <- 3

switch(run_level, {
bsflu_Np=100; bsflu_Nmif=10; bsflu_Neval=10;

bsflu_Nglobal=10; bsflu_Nlocal=10

},{
bsflu_Np=20000; bsflu_Nmif=100; bsflu_Neval=10;

bsflu_Nglobal=10; bsflu_Nlocal=10

},{
bsflu_Np=60000; bsflu_Nmif=300; bsflu_Neval=10;

bsflu_Nglobal=100; bsflu_Nlocal=20}
)
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Running a particle filter

Before running iterated filtering, we check that the basic particle filter
is working.

We test pfilter on a previously computed point estimate read in
from bsflu_params.csv

bsflu_params <- data.matrix(

read.table("mif_bsflu_params.csv",

row.names=NULL,header=TRUE))

which_mle <- which.max(bsflu_params[,"logLik"])

bsflu_mle <- bsflu_params[which_mle,][bsflu_paramnames]

We treat µR1 and µR2 as known, fixed at the empirical mean of the
bed-confinement and convalescence times for symptomatic cases:

bsflu_fixed_params <- c(mu_R1=1/(sum(bsflu_data$B)/512),

mu_R2=1/(sum(bsflu_data$C)/512) )
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We proceed to carry out replicated particle filters at this tentative
MLE:

stew(file=sprintf("pf-%d.rda",run_level),{
t_pf <- system.time(

pf <- foreach(i=1:20,.packages='pomp') %dopar% try(

pfilter(bsflu2,params=bsflu_mle,Np=bsflu_Np)

)

)

},seed=1320290398,kind="L'Ecuyer")

(L_pf <- logmeanexp(sapply(pf,logLik),se=TRUE))

## se

## -74.331279 0.242542
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Caching computations in Rmarkdown

In 6.9 seconds, we obtain an unbiased likelihood estimate of -74.33
with a Monte Carlo standard error of 0.24.

It is not unusual for computations in a POMP analysis to take hours
to run on many cores.

The computations for a final version of a manuscript may take days.

Usually, we use some mechanism like the different values of
run_level so that preliminary versions of the manuscript take less
time to run.

However, when editing the text or working on a different part of the
manuscript, we don’t want to re-run long pieces of code.

Saving results so that the code is only re-run when necessary is called
caching.

42 / 65

run_level


You may already be familiar with Rmarkdown’s own version of
caching.

In the notes, we tell Rmarkdown to cache. For example, in
(notes13.Rmd) the first R chunk, called knitr-opts, contains the
following:

opts_chunk$set(

cache=TRUE,

)

Rmarkdown uses a library called knitr to process the Rmd file, so
options for Rmarkdown are formally options for knitr.

Having set the option cache=TRUE, Rmarkdown caches every chunk,
meaning that a chunk will only be re-run if code in that chunk is
edited.

You can force Rmarkdown to recompute all the chunks by deleting
the cache subdirectory.
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Practical advice for caching

What if changes elsewhere in the document affect the proper
evaluation of your chunk, but you didn’t edit any of the code in the
chunk itself? Rmarkdown will get this wrong. It will not recompute
the chunk.

A perfect caching system doesn’t exist. Always delete the entire
cache and rebuild a fresh cache before finishing a manuscript.

Rmarkdown caching is good for relatively small computations, such as
producing figures or things that may take a minute or two and are
annoying if you have to recompute them every time you make any
edits to the text.

For longer computations, it is good to have full manual control. In
pomp, this is provided by two related functions, stew and bake.
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stew and bake

Notice the function stew in the replicated particle filter code above.

Here, stew looks for a file called pf-[run_level].rda.

If it finds this file, it simply loads the contents of this file.

If the file doesn’t exist, it carries out the specified computation and
saves it in a file of this name.

bake is similar to stew. The difference is that bake uses readRDS

and saveRDS, whereas stew uses load and save.

either way, the computation will not be re-run unless you manually
delete pf-[run_level].rda.

stew and bake reset the seed appropriately whether or not the
computation is recomputed. Othewise, caching risks adverse
consequences for reproducibility.
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A local search of the likelihood surface

bsflu_rw.sd <- 0.02; bsflu_cooling.fraction.50 <- 0.5

stew(file=sprintf("local_search-%d.rda",run_level),{
t_local <- system.time({
mifs_local <- foreach(i=1:bsflu_Nlocal,

.packages='pomp', .combine=c) %dopar% {
mif2(bsflu2,

params=bsflu_mle,

Np=bsflu_Np,

Nmif=bsflu_Nmif,

cooling.fraction.50=bsflu_cooling.fraction.50,

rw.sd=rw.sd(

Beta=bsflu_rw.sd,

mu_IR=bsflu_rw.sd,

rho=bsflu_rw.sd)

)

}
})

},seed=900242057,kind="L'Ecuyer")
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The final filtering iteration carried out by mif2 generates an
approximation to the likelihood at the resulting point estimate.
This approximation is not usually good enough for reliable inference.
Partly, because some parameter perturbations remain in the last
filtering iteration. Partly, because mif2 may be carried out with fewer
particles than necessary for a good likelihood evaluation.
Therefore, we evaluate the likelihood, together with a standard error,
using replicated particle filters at each point estimate:

stew(file=sprintf("lik_local-%d.rda",run_level),{
t_local_eval <- system.time({
liks_local <- foreach(i=1:bsflu_Nlocal,

.combine=rbind,.packages='pomp')%dopar% {
evals <- replicate(bsflu_Neval, logLik(

pfilter(bsflu2,params=coef(mifs_local[[i]]),Np=bsflu_Np)))

logmeanexp(evals, se=TRUE)

}
})

},seed=900242057,kind="L'Ecuyer")

results_local <- data.frame(logLik=liks_local[,1],

logLik_se=liks_local[,2],t(sapply(mifs_local,coef)))
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summary(results_local$logLik,digits=5)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -74.74 -74.20 -74.03 -73.99 -73.71 -73.37

This investigation took 27 minutes for the maximization and 0.9
minutes for the likelihood evaluation.

These repeated stochastic maximizations can show us the geometry
of the likelihood surface in a neighborhood of this point estimate.

A pairs plot is helpful to interpret these results.

pairs(~logLik+Beta+mu_IR+rho,

data=subset(results_local,logLik>max(logLik)-50))
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Question 12.4. What do you conclude from this pairs plot?
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A global likelihood search using random starting values

When carrying out parameter estimation for dynamic systems, we
need to specify beginning values for both the dynamic system (in the
state space) and the parameters (in the parameter space).

By convention, we use initial values for the initialization of the
dynamic system and starting values for initialization of the
parameter search.

Practical parameter estimation involves trying many starting values.
One can specify a large box in parameter space that contains all
parameter vectors which seem remotely sensible.

If an estimation method gives stable conclusions with starting values
drawn randomly from this box, we have some confidence that an
adequate global search has been carried out.
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For our flu model, a box containing reasonable parameter values
might be

bsflu_box <- rbind(

Beta=c(0.001,0.01),

mu_IR=c(0.5,2),

rho = c(0.5,1)

)

We are now ready to carry out likelihood maximizations from diverse
starting points. To simplify the code, we can reset only the starting
parameters from mifs_global[[1]] since the rest of the call to
mif2 can be read in from mifs_global[[1]]:
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stew(file=sprintf("box_eval-%d.rda",run_level),{
t_global <- system.time({
mifs_global <- foreach(i=1:bsflu_Nglobal,

.combine=c,.packages='pomp') %dopar% {
mif2(

mifs_local[[1]],

params=c(

apply(bsflu_box,1,function(x)runif(1,x[1],x[2])),

bsflu_fixed_params)

)}
})

},seed=1270401374,kind="L'Ecuyer")
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Repeated likelihood evaluations at each point estimate

stew(file=sprintf("lik_global_eval-%d.rda",run_level),{
t_global_eval <- system.time({
liks_global <- foreach(i=1:bsflu_Nglobal,

.combine=rbind, .packages='pomp') %dopar% {
evals <- replicate(bsflu_Neval,

logLik(pfilter(bsflu2,

params=coef(mifs_global[[i]]),Np=bsflu_Np)))

logmeanexp(evals, se=TRUE)

}
})

},seed=442141592,kind="L'Ecuyer")

results_global <- data.frame(

logLik=liks_global[,1],

logLik_se=liks_global[,2],t(sapply(mifs_global,coef)))

summary(results_global$logLik,digits=5)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -75.69 -74.60 -74.33 -74.33 -74.02 -73.32
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Building up evidence about the high likelihood region

It is good practice to collect successful optimization results for
subsequent investigation:

if (run_level>2)

write.table(rbind(results_local,results_global),

file="mif_bsflu_params.csv",

append=TRUE,col.names=FALSE,row.names=FALSE)

Evaluation of the best result of this search gives a likelihood of
rround(max(results_global$logLik),1) with a standard error of
0.9. This took in 133.8 minutes for the maximization and 4.2 minutes
for the evaluation. Plotting these diverse parameter estimates can
help to give a feel for the global geometry of the likelihood surface

pairs(~logLik+Beta+mu_IR+rho,

data=subset(results_global,logLik>max(logLik)-250))
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We see that optimization attempts from diverse remote starting
points end up with comparable likelihoods, even when the parameter
values are quite distinct. This gives us some confidence in our
maximization procedure.
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Diagnostic plots for the maximization procedure

The plot method for an object of class mif2d.pomp gives graphical
convergence and filtering diagnostics for the maximization procedure.
Concatenating objects of class mif2d.pomp gives a list of class
mif2List.
The plot method for a mif2List object gives us superimposed
convergence diagnostic plots from different starting values, a useful
tool.

class(mifs_global)

## [1] "mif2List"

## attr(,"package")

## [1] "pomp"

class(mifs_global[[1]])

## [1] "mif2d_pomp"

## attr(,"package")

## [1] "pomp"
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Interpreting the diagnostics

1 What would the convergence plots look like if we cooled too quickly?
Or too slowly? Can you find evidence for either of these above? (The
algorithmic parameter cooling.fraction.50 is the fraction by
which we decrease the random walk standard deviation in 50 filtering
iterations.)

2 Here, we did 300 mif iterations. Should we have done more? Could
we have saved ourselves computational effort by doing less, without
compromising our analysis?

3 Some parameter estimates show strong agreement between the
different mif runs from different starting values. Others less so. How
do you interpret this? Diversity in parameter estimates could be a
signal of poor numerical maximization. It could signal a multi-modal
likelhood surface. Or, it could simply correspond to a flat likelihood
surface where the maximum is not precisely identifiable. Can we tell
from the diagnostic plots which of these is going on here?
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Effective sample size

Maximization via particle filtering requires that the particle filter is
working effectively. One way to monitor this is to pay attention to the
effective sample size on the last filtering iteration.

The effective sample size (ESS) is computed as

ESSn =

(∑J
j=1wn,j

)2
∑J

j=1w
2
n,j

,

where {wn,j} are the weights defined in step 3 of the particle filter
pseudo code.

The ESS approximates the number of independent, equally weighted,
samples from the filtering distribution that would be equally
informative to the one weighted sample that we have obtained by the
particle filter.

For our example, do you have any concerns about the number of
particles?
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Question 12.5. Constructing a profile likelihood. How strong is the
evidence about the contact rate, β, given this model and data? Use mif2

to construct a profile likelihood. Due to time constraints, you may be able
to compute only a preliminary version.

How would you profile over the basic reproduction number,
R0 = βP/µIR. Is this more or less well determined that β for this
model and data?
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Checking model source code

It is surprisingly hard to ensure that written equations and code are
perfectly matched. Here are some things to think about:

1 Papers should be written to be readable to as broad a community as
possible. Code must be written to run successfully. People do not
want to clutter papers with numerical details which they hope and
belief are scientifically irrelevant. What problems can arise due to
this, and what solutions are available?

2 Suppose that there is an error in the coding of rprocess. Suppose
that plug-and-play statistical methodology is used to infer parameters.
A conscientious researcher carries out a simulation study, using
simulate to generate some realizations from the fitted model and
checking that the inference methodology can successfully recover the
known parameters for this model, up to some statistical error. Will
this procedure help to identify the error in rprocess? If not, how
does one debug rprocess? What research practices help minimize
the risk of errors in simulation code?
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Question 12.6. Finding sharp peaks in the likelihood surface. Even in
this small, 3 parameter, example, it takes a considerable amount of
computation to find the global maximum (with values of β around 0.004)
starting from uniform draws in the specified box. The problem is that, on
the scale on which “uniform” is defined, the peak around β ≈ 0.004 is very
narrow. Propose and test a more favorable way to draw starting
parameters for the global search, with better scale invariance properties.
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Question 12.7. Adding a latent class. Modify the model to include a
latent period between becoming exposed and becoming infectious. See
what effect this has on the maximized likelihood.
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Produced with R version 3.6.1 and pomp version 2.7.0.1.

These notes build on previous versions at
ionides.github.io/531w16 and ionides.github.io/531w18.

Those notes draw on material developed for a short course on
Simulation-based Inference for Epidemiological Dynamics
(http://kingaa.github.io/sbied/) by Aaron King and Edward
Ionides, taught at the University of Washington Summer Institute in
Statistics and Modeling in Infectious Diseases, from 2015 through
2019.

Licensed under the Creative Commons attribution-noncommercial
license, http://creativecommons.org/licenses/by-nc/3.0/.
Please share and remix noncommercially, mentioning its origin.
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