Chapter 13. Time series models with covariates, and a

case study of polio

Objectives

@ Discuss covariates in POMP models as a generalization of regression
with ARMA errors.

@ Demonstrate the use of covariates in pomp to add demographic data
(birth rates and total population) and seasonality to an
epidemiological model.

© Present a case study, developing and fitting a POMP model with
covariates.

1/58


pomp

Covariates in time series analysis

Suppose our time series of primary interest is y1.n.

A covariate time series is an additional time series z1.y which is used

to help explain y1.n.

@ When we talk about covariates, it is often implicit that we think of
z1.§ as a measure of an external forcing to the system producing
y1.N. This means that the process generating the data z;.n affects
the process generating 1., but not vice versa.

@ For example, the weather might affect human health, but human
health has negligible effect on weather: weather is an external forcing
to human health processes.

@ When we make an assumption of external forcing, we should try to
make it explicit.

@ In regression analysis, we usually condition on covariates.

Equivalently, we model them as fixed numbers, rather than modeling

them as the outcome of random variables.
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@ When the process leading to z1.n is not external to the system
generating it, we must be alert to the possibility of reverse
causation and confounding variables.

@ lIssues involved in inferring causation from fitting statistical models are
essentially the same whether the model is linear and Gaussian or not.

@ Any experience you have with causal interpretation of linear
regression coefficients also applies to POMP models.
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Covariates in linear time series analysis

@ The main tool we have seen previously for investigating dependence
on covariates is regression with ARMA errors.

@ This tool can also be used to identify lag relationships, where y,,
depends on z,_p,.

@ Another way to investigate associations at different lags is by
computing the sample correlation between 1, and z,_r, for
n € L+ 1: N, and plotting this against L.

@ This is called the cross-correlation function and can be computed
with the R function ccf.

@ An example of the use of the cross-correlation function in a midterm
project: The Association between Recent Cholera Epidemics and
Rainfall in Haiti (https://ionides.github.io/531w16/midterm
project/project3/midterm_project.html).
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Covariates in nonlinear POMP models

@ The general POMP modeling framework allows essentially arbitrary
modeling of covariates.

@ Scientific considerations may suggest sensible ways to model the
relationship.

@ In an epidemiological model for malaria, rainfall might affect the
number of mosquitoes (and hence the disease transmission rate) but
not the duration of infection.

@ In an economic model, geopolitical shocks to the oil supply might
have direct influence on energy prices, secondary direct effects on
inflation and investment, and indirect consequences for
unemployment.

@ In a hydrology model, precipitation is a covariate explaining river flow,
but the exact nature of the relationship is a question of interest.
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Including covariates in the general POMP framework

@ Recall that a POMP model is specified by defining the following:

Ixo (203 0),
an|Xn_1 (Tn | Tn—1:0),
fYn|Xn (yn ’ T s 9)7

forn=1:N
@ The possibility of a general dependence on n includes the possibility
that there is some covariate time series zg.n such that

on(wO;H) = on(x(];'ngO)

an\Xn,l(xn | Tn—1 79) = an|Xn,1($n | Tpn—1 ;97 Zn)a

Iy 1%, (Yn | 705 0) = fyo1x,Un | 2030, 20),
forn=1:N
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Seasonality in a POMP model

@ One specific choice of covariates is to construct zg.y so that it
fluctuates periodically, once per year. This allows seasonality enter
the POMP model in whatever way is appropriate for the system under
investigation.

@ All that remains is to hypothesize what is a reasonable way to include
covariates for your system, and to fit the resulting model.

@ Now we can evaluate and maximize the log likelihood, we can
construct AIC or likelihood ratio tests to see if the covariate helps
describe the data.

@ This also lets us compare alternative ways the covariates might enter
the process model and/or the measurement model.
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Covariates in the pomp package

@ pomp provides facilities for including covariates in a pomp object.

@ Named covariate time series entered via the covar argument to pomp
are automatically defined within Csnippets used for the rprocess,
dprocess, rmeasure, dmeasure and rinit arguments.

@ We see this in practice in the following epidemiological model, which
has population census, birth data and seasonality as covariates.
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Case study: polio in Wisconsin

@ The massive global polio eradication initiative (GPEI) has brought
polio from a major global disease to the brink of extinction.

@ Finishing this task is proving hard, and improved understanding polio
ecology might assist.

o Martinez-Bakker et al. (2015) investigated this using extensive state
level pre-vaccination era data in USA.

o We will follow the approach of Martinez-Bakker et al. (2015) for one
state (Wisconsin). In the context of their model, we can quantify
seasonality of transmission, the role of the birth rate in explaining the
transmission dynamics, and the persistence mechanism of polio.

e Martinez-Bakker et al. (2015) carrried out this analysis for all 48
contigous states and District of Columbia, and their data and code
are publicly available. The data we study, in polio_wisconsin.csv,
consist of cases, the monthly reported polio cases; births, the
monthly recorded births; pop, the annual census; time, date in years.
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polio_wisconsin.csv
cases
births
pop
time

polio_data <- read.csv("polio_wisconsin.csv",comment="#")

head(polio_data,4)

#Hit time cases births pop

## 1 1931.083
## 2 1931.167
## 3 1931.250
## 4 1931.333

7

0
7
3

4698 2990000
4354 2990000
4836 2990000
4468 2990000
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@ We use the compartment model of Martinez-Bakker et al. (2015).

o Compartments representing susceptible babies in each of six
one-month birth cohorts (SP,...,SP), susceptible older individuals
(S9), infected babies (I7), infected older individuals (1), and
recovered with lifelong immunity (R).

@ The state vector of the disease transmission model consists of
numbers of individuals in each compartment at each time,

X(t) = (ST(1), ., S§ (8), I°(8), I°(t), R(1)).
@ Babies under six months are modeled as fully protected from
symptomatic poliomyelitis.

@ Older infections lead to reported cases (usually paralysis) at a rate p.

@ The flows through the compartments are graphically represented on
the following slide (Figure 1A of Martinez-Bakker et al. (2015)):
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Setting up the model

@ Duration of infection is comparable to the one-month reporting
aggregation, so a discrete time model may be appropriate.

@ Martinez-Bakker et al. (2015) fitted monthly reported cases, May
1932 through January 1953, so we set ¢, = 1932 + (4 +n)/12 and

Xn = X(ta) = (ST, s S0, I I9.R,).

noino
—1

@ The mean force of infection, in units of yr™", is modeled as

19 + 1P
= +
" (Bn b
where P, is census population interpolated to time t,, and seasonality
of transmission is modeled as

K
Bn = exp {Z bk&k(tn)} )

k=1
with {&x(t),k =1,..., K} being a periodic B-spline basis with
K =6.
e P, and {(t,) are covariate time series. 14/58



@ The force of infection has a stochastic perturbation,
An = 5\n€n7

where ¢, is a Gamma random variable with mean 1 and variance
o2+ aﬁem/)\n. These two terms capture variation on the
environmental and demographic scales, respectively. All

1

compartments suffer a mortality rate, set at § = 1/60yr™".

@ Within each month, all susceptible individuals are modeled as having
exposure to constant competing hazards of mortality and polio
infection. The chance of remaining in the susceptible population
when exposed to these hazards for one month is therefore

pn =exp { — (6 + An)/12},
with the chance of polio infection being

dn = (1 _pn))\n/()\n + 5)
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@ We employ a continuous population model, with no demographic
stochasticity. Writing B,, for births in month n, we obtain the
dynamic model of Martinez-Bakker et al. (2015):

B
Sl n+1
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The measurement model

@ The model for the reported observations, conditional on the state, is a
discretized normal distribution truncated at zero, with both
environmental and Poisson-scale contributions to the variance:

Y,, = max{round(Z,),0}, Z, ~ normal (p],?, (713)2 + ,OI,?) .
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Initial conditions

o Additional parameters are used to specify initial state values at time

to = 1932 +4/12. . o
We will suppose there are parameters (513,07 ...,Sgo,lf,IO,SOO) that
specify the population in each compartment at time ¢ via

Sfo=gfo,---,563,o=550, 1P =PRI, S§=PRSY, I$ =PRI

Following Martinez-Bakker et al. (2015), we make an approximation
for the initial conditions of ignoring infant infections at time tg. Thus,
we set f(]f = 0 and use monthly births in the preceding months
(ignoring infant mortality) to fix g,fo =By pfork=1,...,6. The
estimated initial conditions are then defined by the two parameters I$
and 5’6), since the initial recovered population, Ry, is specified by
subtraction of all the other compartments from the total initial
population, Fp.

It is convenient to parameterize the estimated initial states as
fractions of the population, whereas the initial states fixed at births

are parameterized directly as a count.
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Building a pomp object for the polio model

@ We code the state and observation variables, and the choice of tg, as

polio_statenames <- c("SB1","SB2","SB3","SB4","SB5","SB6",
IIIBII s IISOII s IIIOII)

polio_obsnames <- '"cases"

polio_t0 <- 1932+4/12

@ We do not explictly code R, since it is defined implicitly as the total
population minus the sum of the other compartments. Due to lifelong
immunity, individuals in R play no role in the dynamics. Even
occasional negative values of R (due to a discrepancy between the
census and the mortality model) would not be a fatal flaw.
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pomp

Setting up the covariate table

@ time gives the time at which the covariates are defined.
@ P is a smoothed interpolation of the annual census.
@ B is monthly births.

@ xil,...,xi6 is a periodic B-spline basis

polio_K <- 6
polio_covar <- covariate_table(
t=polio_data$time,
B=polio_data$births,
P=predict(smooth.spline(x=1931:1954,
y=polio_data$pop[seq(12,24%12,by=12)])) 8y,
periodic.bspline.basis(t,nbasis=polio_K,
degree=3,period=1,names="xi%d"),
times="t"
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B
xi1,...,xi6

Regular parameters and initial value parameters

@ The parameters by, ...,bk, %, p, T, Odem; Oenv iN the model above are
regular parameters (RPs), coded as

polio_rp_names = C("bl" R npon R np3n R npHan R npE" s n"pHe" s

"psi","rho","tau","sigma_dem","sigma_env")

o The initial value parameters (IVPs), I and S, are coded for each
state named by adding _O to the state name:

polio_ivp_names <- c("S0_0","I0_O0")
polio_paramnames <- c(polio_rp_names,polio_ivp_names)
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_0

Fixed parameters (FPs)

e Two quantities in the dynamic model specification, § = 1/60yr—! and
K = 6, are not estimated.
@ Six other initial value quantities, {S’fo, ... ,5‘50}, are treated as fixed.

o Fixed quantities could be coded as constants using the globals
argument of pomp, but here we pass them as fixed parameters (FPs).

polio_fp_names <- c("delta","K",
"SB1_0","SB2_0","SB3_0","SB4_0","SB5_0","SB6_0")

polio_paramnames <- c(polio_rp_names,
polio_ivp_names,polio_fp_names)

covar_index_t0 <- which(abs(polio_covar@times-polio_t0)<0.01)

polio_initial_births <- polio_covar@table["B",covar_index_t0-0:5]

names (polio_initial_births) <- c("SB1_0","SB2_0",
"SB3_0","SB4_0","SB5_0","SB6_0")

polio_fixed_params <- c(delta=1/60,K=polio_K,
polio_initial_births)
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A starting value for the parameters

@ We have to start somewhere for our search in parameter space.

@ The following parameter vector is based on informal model
exploration and prior research:

polio_params_guess <- c(b1=3,b2=0,b3=1.5,b4=6,b5=5,b6=3,
psi=0.002,rho=0.01,tau=0.001,sigma_dem=0.04,sigma_env=0.5,
S0_.0=0.12,10_0=0.001,polio_fixed_params)
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polio_rprocess <- Csnippet ("
double beta = exp(dot_product( (int) K, &xil, &bl));
double lambda = (beta * (I0O+IB) / P + psi);
double var_epsilon = pow(sigma_dem,2)/ lambda +
pow(sigma_env,2);
lambda *= (var_epsilon < 1.0e-6) 7 1
rgamma(1l/var_epsilon,var_epsilon) ;
double p = exp(- (deltat+lambda)/12);
double q = (1-p)*lambda/(delta+lambda) ;
SB1 = B;
SB2= SB1#p;
SB3=SB2%*p;
SB4=SB3*p;
SB5=8B4*p;
SB6=SB5%p;
S0= (SB6+S0)*p;
IB=(SB1+SB2+SB3+SB4+SB5+SB6) *q;
10=S0%q;
")
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polio_dmeasure <- Csnippet ("

double tol = 1.0e-25;
double mean_cases = rhox*I0;
double sd_cases = sqrt(pow(tauxI0,2) + mean_cases);
if(cases > 0.0){

lik = pnorm(cases+0.5,mean_cases,sd_cases,1,0)

- pnorm(cases-0.5,mean_cases,sd_cases,1,0) + tol;

} else{

lik = pnorm(cases+0.5,mean_cases,sd_cases,1,0) + tol;
}

if (give_log) lik = log(lik);
")

polio_rmeasure <- Csnippet("
cases = rnorm(rho*I0, sqrt( pow(tauxI0,2) + rho*I0 ) );
if (cases > 0.0) {
cases = nearbyint(cases);
} else {
cases = 0.0;
}

Il)
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The map from the initial value parameters to the initial value of the states

at time £g is coded by the rinit function:

polio_rinit <- Csnippet ("

Il)

SB1
SB2
SB3

SB4 =

SB5
SB6
IB
10
S0

SB1_0;
SB2_0;
SB3_0;
SB4_0;
SB5_0;
SB6_0;
0;
I0_0 * P;
S0_0 * P;
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Parameter transformations

o For parameter estimation, it is helpful to have transformations that
map each parameter into the whole real line and which put
uncertainty close to a unit scale

polio_partrans <- parameter_trans(
log=c("psi","rho","tau","sigma_dem","sigma_env"),
logit=c("S0_0","I0_0")

)

@ Since the seasonal splines are exponentiated, the beta parameters are
already defined on the real line with unit scale uncertainty.
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We now put these pieces together into a pomp object.

polio <- pomp(

)

data=subset (polio_data,
(time > polio_tO + 0.01) & (time < 1953+1/12+0.01),
select=c("cases","time")),

times="time",

tO=polio_tO,

params=polio_params_guess,

rprocess = euler(step.fun = polio_rprocess, delta.t=1/12),

rmeasure= polio_rmeasure,

dmeasure = polio_dmeasure,

covar=polio_covar,

obsnames = polio_obsnames,

statenames = polio_statenames,

paramnames = polio_paramnames,

rinit=polio_rinit,

partrans=polio_partrans

plot(polio)
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Setting run levels to control computation time

o run_level=1 will set all the algorithmic parameters to the first
column of values in the following code, for debugging.

@ Here, Np is the number of particles, and Nmif is the number of
iterations of the optimization procedure carried.

@ run_level=2 uses Np=1000 and Nmif=100. enough effort in this
case to gives reasonably stable results for a moderate amount of
computational time.

o Larger values give more refined computations, implemented here by
run_level=3 which was run on a computing node.

run_level=3

polio_Np <- switch(run_level, 100, 1e3, 5e3)
polio_Nmif <- switch(run_level, 10, 100, 200)
polio_Nreps_eval <- switch(run_level, 2, 10, 20)
polio_Nreps_local <- switch(run_level, 10, 20, 40)
polio_Nreps_global <-switch(run_level, 10, 20, 100)
polio_Nsim <- switch(run_level, 50, 100, 500)
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Comments on setting algorithmic parameters

@ run_level is a facility that is convenient for when you are editing the
source code. It plays no fundamental role in the final results. If you
are not editing the source code, or using the code as a template for
developing your own analysis, it has no function.

@ When you edit a document with different run_level options, you
can debug your code by editing run_level=1. Then, you can get
preliminary assessment of whether your results are sensible with
run_level=2 and get finalized results, with reduced Monte Carlo
error, by editing run_level=3.

@ In practice, you probably want run_level=1 to run in minutes,
run_level=2 to run in tens of minutes, and run_level=3 to run in
hours.

@ You can increase or decrease the numbers of particles, or the number
of mif2 iterations, or the number of global searches carried out, to
make sure this procedure is practical on your machine.

@ Appropriate values of the algorithmic parameters for each run-level

are context dependent.
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Question 13.1. Choosing algorithmic parameters.
Discuss how you choose the algorithmic parameters for each run level
when building a new likelihood-based data analysis using pfilter() and

mif2() in pomp.
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Likelihood evaluation at the starting parameter estimate

require(doParallel)
registerDoParallel ()

stew(file=sprintf ("pfl-%d.rda",run_level),{
tl <- system.time(
pfl <- foreach(i=1:20, .packages="'pomp') %dopar} pfilter(
polio,Np=polio_Np)
)
},seed=493536993,kind=”L'Ecuyer”)
L1 <- logmeanexp(sapply(pfl,logLik),se=TRUE)

@ In 2.5 seconds, we obtain a log likelihood estimate of -816.82 with a
Monte standard error of 0.18.
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Simulation to investigate local persistence

@ The scientific purpose of fitting a model typically involves analyzing
properties of the fitted model, often investigated using simulation.

o Following Martinez-Bakker et al. (2015), we are interested in how
often months with no reported cases (Y;, = 0) correspond to months
without any local asymptomatic cases, defined for our continuous
state model as IZ 4+ 19 < 1/2.

@ For Wisconsin, using our model at the estimated MLE, we simulate in
parallel as follows:

stew(sprintf ("persistence-%d.rda",run_level),{
t_sim <- system.time(
sim <- foreach(i=1:polio_Nsim,
.packages='pomp') ¥%dopar’, simulate(polio)
)
},seed=493536993,kind="L"Ecuyer")
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no_cases_data <- sum(obs(polio)==0)
no_cases_sim <- sum(sapply(sim,obs)==0)/length(sim)
fadeoutl_sim <- sum(sapply(sim,function(po)states(po) ["IB",]
+states(po) ["I0",]1<1))/length(sim)
fadeout100_sim <- sum(sapply(sim,function(po)states(po) ["IB",]
+states(po) ["I0",]1<100))/length(sim)
imports_sim <- coef(polio) ["psi"]*mean(sapply(sim,
function(po) mean(states(po) ["SO",]+states(po) ["SB1",]
+states(po) ["SB2",]+states(po) ["SB3",]+states(po) ["SB4",]
+states(po) ["SB5",]+states(po) ["SB6",]1)))/12

For the data, there were 26 months with no reported cases, similar to the
mean of 51.3 for simulations from the fitted model. Months with no
asyptomatic infections for the simulations were rare, on average 0.8
months per simulation. Months with fewer than 100 infections averaged
63.8 per simulation, which in the context of a reporting rate of 0.01 can
explain the absences of case reports. The mean monthly infections due to
importations, modeled by ¢, is 117.5. This does not give much
opportunity for local elimination of poliovirus. A profile over i would show

how sensitive this conclusion is to values of i consistent with the data.
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@ It is also good practice to look at simulations from the fitted model:

mle_simulation <- simulate(polio,seed=127)
plot(mle_simulation)
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@ We see from this simulation that the fitted model can generate report
histories that look qualitatively similar to the data. However, there are
things to notice in the reconstructed latent states. Specifically, the
pool of older susceptibles, So(t), is mostly increasing. The reduced
case burden in the data in the time interval 1932-1945 is explained by
a large initial recovered (R) population, which implies much higher
levels of polio before 1932. There were large epidemics of polio in the
USA early in the 20th century, so this is not implausible.

@ A liklihood profile over the parameter 5‘63 could help to clarify to what
extent this is a critical feature of how the model explains the data.
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Local likelihood maximization

@ Let's see if we can improve on the previous MLE. We use the IF2
algorithm. We set a constant random walk standard deviation for
each of the regular parameters and a larger constant for each of the
initial value parameters:

polio_rw.sd_rp <- 0.02

polio_rw.sd_ivp <- 0.2

polio_cooling.fraction.50 <- 0.5

polio_rw.sd <- rw.sd(
bl=polio_rw.sd_rp, b2=polio_rw.sd_rp,
b3=polio_rw.sd_rp, b4=polio_rw.sd_rp,
b5=polio_rw.sd_rp, b6=polio_rw.sd_rp,
psi=polio_rw.sd_rp, rho=polio_rw.sd_rp,
tau=polio_rw.sd_rp, sigma_dem=polio_rw.sd_rp,
sigma_env=polio_rw.sd_rp,
I0_O=ivp(polio_rw.sd_ivp), SO0_O=ivp(polio_rw.sd_ivp)
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stew(sprintf ("mif-%d.rda",run_level),{
t2 <- system.time({
m2 <- foreach(i=1:polio_Nreps_local,
.packages='pomp', .combine=c) %dopar} mif2(polio,
Np=polio_Np,
Nmif=polio_Nmif,
cooling.fraction.50=polio_cooling.fraction.50,
rw.sd=polio_rw.sd)
lik_m2 <- foreach(i=1:polio_Nreps_local,
.packages='pomp', .combine=rbind) Jdopar’ logmeanexp (
replicate(polio_Nreps_eval,logLik(
pfilter(polio,params=coef (m2[[i]]),Np=polio_Np))),
se=TRUE)
9

},5eed=318817883,kind="L"'Ecuyer")
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r2 <- data.frame(logLik=1ik_m2[,1],loglLik_se=1ik_m2[,2],

t (sapply (m2, coef)))

if (run_level>1)
write.table(r2,file="polio_params.csv",append=TRUE,
col .names=FALSE,row.names=FALSE)

summary (r2$loglik,digits=5)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -796.7 -795.6 -795.2 -795.3 -795.0 -794.5

@ This investigation took 23.6 minutes.

@ These repeated stochastic maximizations can also show us the
geometry of the likelihood surface in a neighborhood of this point

estimate:
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pairs(“logLik+psi+rho+tau+sigma_dem+sigma_env,
data=subset (r2,logLik>max (logLik)-20))
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@ We see strong tradeoffs between ¢, p and 0gem. By itself, in the
absence of other assumptions, the pathogen immigration rate 1) is
fairly weakly identified. However, the reporting rate p is essentially
the fraction of poliovirus infections leading to acute flaccid paralysis,
which is known to be around 1%. This plot suggests that fixing an
assumed value of p might lead to much more precise inference on ;
the rate of pathogen immigration presumably being important for
understanding disease persistence. These hypotheses could be
investigated more formally by construction of profile likelihood plots
and likelihood ratio tests.
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Comparison of our implementation with Martinez-Bakker

et al. (2015)

@ This setup has minor differences in notation, model construction and
code compared to Martinez-Bakker et al. (2015).

@ The maximized likelihood reported for these data by Martinez-Bakker
et al. (2015) was -794.34, with Monte Carlo evaluation error of 0.18.

@ This is similar to the value -794.49 found by this search.

@ The differences between the two implementations do not substantially
improve or decrease the fit of our model compared to Martinez-Bakker
et al. (2015), demonstrating reproducibility of both results.
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Global likelihood maximization

Practical parameter estimation involves trying many starting values for the
parameters. One can specify a large box in parameter space that contains
all parameter vectors which seem remotely sensible. If an estimation
method gives stable conclusions with starting values drawn randomly from
this box, this gives some confidence that an adequate global search has
been carried out.

For our polio model, a box containing reasonable parameter values might
be

polio_box <- rbind(
bl=c(-2,8), b2=c(-2,8),
b3=c(-2,8), b4=c(-2,8),
b5=c(-2,8), b6=c(-2,8),
psi=c(0,0.1), rho=c(0,0.1), tau=c(0,0.1),
sigma_dem=c(0,0.5), sigma_env=c(0,1),
S0_0=c(0,1), I0_0=c(0,0.01)
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We then carry out a search identical to the local one except for the
starting parameter values. This can be succinctly coded by calling mif2 on
the previously constructed object, m2[[1]], with a reset starting value:

stew(file=sprintf ("box_eval-d.rda",run_level),{
t3 <- system.time({
m3 <- foreach(i=1:polio_Nreps_global, .packages="'pomp',
.combine=c) Y%doparj mif2(
m2[[11],
params=c (apply (polio_box,1,function(x)runif (1,x[1],x[2])),
polio_fixed_params)
)
lik_m3 <- foreach(i=1:polio_Nreps_global, .packages='pomp',
.combine=rbind) %dopar’, logmeanexp(
replicate(polio_Nreps_eval,
logLik(pfilter(polio,
params=coef (m3[[i]]) ,Np=polio_Np))),
se=TRUE)
9,

},seed=290860873,kind=”L'Ecuyer”)
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mif2
m2[[1]]

r3 <- data.frame(logLik=1ik_m3[,1],loglik_se=1ik_m3[,2],t(sapply(m3
if (run_level>l) write.table(r3,file="polio_params.csv",append=TRUE,
summary (r3$loglik,digits=5)

## Min. 1st Qu. Median Mean 3rd Qu. Max .
## -856.4 -796.7 -795.7 -T797.6 -795.1 -794.5

@ Evaluation of the best result of this search gives a likelihood of -794.5
with a standard error of 0.1. We see that optimization attempts from
diverse remote starting points can approach our MLE, but do not
exceed it. This gives us some reasonable confidence in our MLE.

@ Plotting these diverse parameter estimates can help to give a feel for
the global geometry of the likelihood surface
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pairs(“logLik+psi+rho+tau+sigma_dem+sigma_env,
data=subset (r3,logLik>max (logLik)-20))
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Benchmark likelihoods for non-mechanistic models

@ To understand these global searches, many of which may correspond
to parameter values having no meaningful scientific interpretation, it
is helpful to put the log likelihoods in the context of some
non-mechanistic benchmarks.

@ The most basic statistical model for data is independent, identically
distributed (lID). Picking a negative binomial model,

nb_lik <- function(theta) -sum(dnbinom(as.vector(obs(polio)),
size=exp(thetall]) ,prob=exp(thetal[2]),log=TRUE))

nb_mle <- optim(c(0,-5),nb_1lik)

-nb_mle$value

## [1] -1036.227

@ We see that a model with likelihood below -1036.2 is unreasonable.
This explains a cutoff around this value in the global searches: in
these cases, the model is finding essentially 1ID explanations for the

data.
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ARMA models as benchmarks

@ Linear, Gaussian auto-regressive moving-average (ARMA) models
provide non-mechansitic fits to the data including flexible dependence
relationships.

e We fit to log(y;; + 1) and correct the likelihood back to the scale
appropriate for the untransformed data:

log_y <- log(as.vector(obs(polio))+1)

arma_fit <- arima(log_y,order=c(2,0,2),
seasonal=list(order=c(1,0,1),period=12))

arma_fit$loglik-sum(log_y)

## [1] -822.0827

@ This 7-parameter model, which knows nothing of susceptible
depletion, attains a likelihood of -822.1.

@ Although the goal of mechanistic modeling here is not to beat
non-mechanstic models, it is comforting that we're competitive with

them.
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Mining previous investigations of the likelihood

polio_params <- read.table("polio_params.csv",row.names=NULL,
header=TRUE)

pairs(“logLik+psi+rho+taut+sigma_dem+sigma_env,
data=subset (polio_params,logLik>max(logLik)-20))
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@ Here, we see that the most successful searches have always led to
models with reporting rate around 1-2%. This impression can be
reinforced by looking at results from the global searches:

plot(logLik™rho,data=subset (r3,loglik>max(r3$loglik)-10) ,log="x"
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@ Reporting rates close to 1% provide a small but clear advantage
(several units of log likelihood) in explaining the data. For these
reporting rates, depletion of susceptibles can help to explain the
dynamics.
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Question 13.2. Parameter estimation using randomized starting
values. Comment on the computations above, for parameter estimation
using randomized starting values. Propose and try out at least one
modification of the procedure. How could one make a formal statement
quantifying the error of the optimization procedure?
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Question 13.3. Demography and discrete time. It can be surprisingly
hard to include birth, death, immigration, emmigration and aging into a
disease model in satisfactory ways. Consider the strengths and weaknesses
of the analysis presented. For example, how does it compare to a
continuous-time model? In an imperfect world, it is nice to check the
extent to which the conclusions are insensitive to alternative modeling
decisions. If you have some ideas to change the treatmentof demography
(or an other aspect of the model) you could have a go at coding it up to
see if it makes a difference.
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Question 13.4. Diagnosing filtering and maximization convergence.
Are there outliers in the data (i.e., observations that do not fit well with
our model)? Are we using unnecessarily large amounts of computer time
to get our results? Are there indications that we would should run our
computations for longer? Or maybe with different choices of algorithmic
settings? In particular, cooling.fraction.50 gives the fraction by which
the random walk standard deviation is decreased (" cooled”) in 50
iterations. If cooling.fraction.50 is too small, the search will " freeze"
too soon, evidenced by flat parallel lines in the convergence diagnostics. If
cooling.fraction.50 is too large, the researcher may run of of time,
patience or computing budget (or all three) before the parameter
trajectories approach an MLE.
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cooling.fraction.50
cooling.fraction.50
cooling.fraction.50

plot (m3[r3$loglik>max (r3$loglik)-10])
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The likelihood is particularly important to keep in mind. If parameter
estimates are numerically unstable, that could be a consequence of a
weakly identified parameter subspace.

The presence of some weakly identified combinations of parameters is
not fundamentally a scientific flaw; rather, our scientific inquiry looks
to investigate which questions can and cannot be answered in the
context of a set of data and modeling assumptions.

As long as the search is demonstrably approaching the maximum
likelihood region we should not necessarily be worried about the
stability of parameter values (at least, from the point of diagnosing
successful maximization).

So, we zoom in on the likelihood convergence:
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loglik_convergence <- do.call(cbind,

traces (m3[r3$loglik>max (r3$loglik)-10],"loglik"))
matplot(loglik_convergence,type="1",1ty=1,

ylim=max (loglik_convergence,na.rm=T)+c(-10,0))
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Acknowledgments and License

@ Produced with R version 3.6.2 and pomp version 2.3.

@ These notes build on previous versions at
ionides.github.io/531w16 and ionides.github.io/531w18.

@ Those notes draw on material developed for a short course on
Simulation-based Inference for Epidemiological Dynamics
(http://kingaa.github.io/sbied/) by Aaron King and Edward
lonides, taught at the University of Washington Summer Institute in
Statistics and Modeling in Infectious Diseases, from 2015 through
2019.

@ Licensed under the Creative Commons attribution-noncommercial
license, http://creativecommons.org/licenses/by-nc/3.0/.
Please share and remix noncommercially, mentioning its origin.
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