
Chapter 14. Case study: POMP modeling to investigate
financial volatility

Objectives

1 Introduce financial volatility and some models used to study it:
ARCH, GARCH, and stochastic volatility models.

2 Provide a case study in using pomp to study a stochastic volatility
model.

3 Discuss this case study as an example of a broader class of nonlinear
POMP models, derived from adding stochastically time varying
parameters to a linear or nonlinear time series model.

4 Discuss this case study as an example of an extension of the POMP
framework which allows feedback from the observation process to the
state process.

1 / 38

pomp

Introduction

Returns on investments in stock market indices or large companies are
often found to be approximately uncorrelated.

If investment returns are substantially correlated, investors can study
their time series behavior and make money.

If the investment is non-liquid (i.e., not reliably tradeable), or
expensive to trade, then it might be hard to make money even if you
can statistically predict a positive expected return.

Otherwise, the market may notice a favorable investment opportunity.
More buyers will lead to higher prices, and the opportunity will
disappear.

Consequently, most readily traded investments (e.g., stock market
indices, or stock of large companies) have close to uncorrelated
returns.

The variability of the returns (called the volatility) can fluctuate
considerably. Understanding this volatility is important for quantifying
and managing the risk of investments.

2 / 38

Recall the daily S&P 500 data that we saw earlier, in Chapter 3.

dat <- read.table("sp500.csv",sep=",",header=TRUE)

plot(as.Date(dat$Date),dat$Close,

xlab="date",ylab="S&P 500",type="l")

plot(as.Date(dat$Date),dat$Close, log="y",

xlab="date",ylab="S&P 500",type="l")

3 / 38

Returns, absolute returns, and autocorrelation

We write {zn, n = 1, . . . , N} for the data.

We write the return on the S&P 500 index, i.e., the difference of the
log of the index, as

yn = log(zn)− log(zn−1).

* We saw in Chapter 3 that y2:N has negligible sample
autocorrelation.

However, the absolute deviations from average,

an =

∣∣∣∣∣yn − 1

N − 1

N∑
k=2

yk

∣∣∣∣∣
have considerable sample autocorrelation.

4 / 38

We fit models to the demeaned daily returns for the S&P 500 index
for 2002-2012, to compare with Bretó (2014).

load(file="sp500-2002-2012.rda")

plot(sp500.ret.demeaned, type="l",

xlab="business day (2002-2012)",ylab="demeaned S&P 500 return")

Question 14.1. Is it appropriate to fit a stationary model to this series, or
do we have evidence for violation of stationarity? Explain.

5 / 38

The ARCH model

The ARCH and GARCH models have become widely used for
financial time series modeling. Here, we follow Cowpertwait and
Metcalfe (2009) to introduce these models; see also Section 5.4 of
Shumway and Stoffer (3rd edition).
An order p autoregressive conditional heteroskedasticity model,
known as ARCH(p), has the form

Yn = εn
√
Vn,

where ε1:N is white noise and

Vn = α0 +

p∑
j=1

αjY
2
n−j .

If ε1:N is Gaussian, then Y1:N is called a Gaussian ARCH(p). Note,
however, that a Gaussian ARCH model is not a Gaussian process, just
a process driven by Gaussian noise.
If Y1:N is a Gaussian ARCH(p), then Y 2

1:N is AR(p), but not Gaussian
AR(p).

6 / 38

The GARCH model

The generalized ARCH model, known as GARCH(p,q), has the form

Yn = εn
√
Vn,

where

Vn = α0 +

p∑
j=1

αjY
2
n−j +

q∑
k=1

βkVn−k

and ε1:N is white noise.

The GARCH(1.1) model is a popular choice (Cowpertwait and
Metcalfe; 2009) which can be fitted using garch() in the tseries R
package.

7 / 38

garch()
tseries

Fitting a GARCH model

require(tseries)

fit.garch <- garch(sp500.ret.demeaned,grad = "numerical",

trace = FALSE)

L.garch <- tseries:::logLik.garch(fit.garch)

This 3-parameter model has a maximized log likelihood of −4019.7.
It appears that a bug in this version of tseries means that simply
logLik(fit.garch) does not work.
From ?garch we learn this is actually a conditional log likelihood
given the first max(p, q) values.

Question 14.2. It is usually inappropriate to present numerical results to
five significant figures. Is this appropriate for reporting the log likelihood
here? Why?

8 / 38

tseries
logLik(fit.garch)
?garch

We are now in a position to employ the framework of likelihood-based
inference for GARCH models. In particular, profile likelihood,
likelihood ratio tests, and AIC are available.

We can readily simulate from a fitted GARCH model, if we want to
investigate properties of a fitted model that we don’t know how to
compute analytically.

However, GARCH is a black-box model, in the sense that the
parameters don’t have clear interpretation. We can develop an
appropriate GARCH(p,q) model, and that may be useful for
forecasting, but it won’t help us understand more about how financial
markets work.

To develop and test a hypothesis that goes beyond the class of
GARCH models, it is useful to have the POMP framework available.

9 / 38

Financial leverage

It is a fairly well established empirical observation that negative
shocks to a stockmarket index are associated with a subsequent
increase in volatility.

This phenomenon is called leverage.

Here, we formally define leverage, Rn on day n as the correlation
between index return on day n− 1 and the increase in the log
volatility from day n− 1 to day n.

Models have been proposed which incorporate leverage into the
dynamics (Bretó; 2014).

We present a pomp implementation of Bretó (2014), which models
Rn as a random walk on a transformed scale,

Rn =
exp{2Gn} − 1

exp{2Gn}+ 1
,

where {Gn} is the usual, Gaussian random walk.

10 / 38

Time-varying parameters

A special case of this model, with the Gaussian random walk having
standard deviation zero, is a fixed leverage model.

The POMP framework provides a general approach to time-varying
parameters. Considering a parameter as a latent, unobserved random
process that can progressively change its value over time (following a
random walk, or some other stochastic process) leads to a POMP
model. The resulting POMP model is usually nonlinear.

Many real-world systems are non-stationary and could be investigated
using models with time-varying parameters.

Some of the midterm projects discovered examples of this.

This is one possible thing to explore in your final project.

11 / 38

Following the notation and model representation in equation (4) of
Bretó (2014), we propose a model,

Yn = exp{Hn/2}εn, (1)

Hn = µh(1− φ) + φHn−1 + βn−1Rn exp{−Hn−1/2}+ ωn, (2)

Gn = Gn−1 + νn, (3)

where βn = Ynση
√
1− φ2, {εn} is an iid N(0, 1) sequence, {νn} is

an iid N(0, σ2ν) sequence, and {ωn} is an iid N(0, σ2ω) sequence.

Here, Hn is the log volatility.

12 / 38

Building a POMP model

A complication is that transitions of the latent variables from
(Gn, Hn) to (Gn+1, Hn+1) depends on the observable variable Yn.
Formally, therefore, we use the state variable Xn = (Gn, Hn, Yn) and
model the measurement process as a perfect observation of the Yn
component of the state space.
To define a recursive particle filter, we write the filtered particle j at
time n− 1 as

XF
n−1,j = (GFn−1,j , H

F
n−1,j , yn−1).

Now we can construct prediction particles at time n,

(GPn,j , H
P
n,j) ∼ fGn,Hn|Gn−1,Hn−1,Yn−1

(gn|GFn−1,j , HF
n−1,j , yn−1)

with corresponding weight

wn,j = fYn|Gn,Hn
(yn|GPn,j , HP

n,j).

Resampling with probability proportional to these weights gives an
SMC representation of the filtering distribution at time n.
A derivation of this is given as an Appendix.

13 / 38

We can coerce the basic sequential Monte Carlo algorithm,
implemented as pfilter in pomp, into carrying out this calculation
by building two different pomp objects, one to do filtering and another
to do simulation.

For the implementation in pomp, we proceed to write Csnippet code
for the two versions of rprocess.

sp500_statenames <- c("H","G","Y_state")

sp500_rp_names <- c("sigma_nu","mu_h","phi","sigma_eta")

sp500_ivp_names <- c("G_0","H_0")

sp500_paramnames <- c(sp500_rp_names,sp500_ivp_names)

14 / 38

pfilter
pomp
pomp
pomp
rprocess

rproc1 <- "

double beta,omega,nu;

omega = rnorm(0,sigma_eta * sqrt(1- phi*phi) *

sqrt(1-tanh(G)*tanh(G)));

nu = rnorm(0, sigma_nu);

G += nu;

beta = Y_state * sigma_eta * sqrt(1- phi*phi);

H = mu_h*(1 - phi) + phi*H + beta * tanh(G)

* exp(-H/2) + omega;

"

rproc2.sim <- "

Y_state = rnorm(0,exp(H/2));

"

rproc2.filt <- "

Y_state = covaryt;

"

sp500_rproc.sim <- paste(rproc1,rproc2.sim)

sp500_rproc.filt <- paste(rproc1,rproc2.filt)

15 / 38

sp500_rinit <- "

G = G_0;

H = H_0;

Y_state = rnorm(0,exp(H/2));

"

sp500_rmeasure <- "

y=Y_state;

"

sp500_dmeasure <- "

lik=dnorm(y,0,exp(H/2),give_log);

"

16 / 38

Parameter transformations

For optimization procedures such as iterated filtering, it is convenient
to transform parameters to be defined on the whole real line.

We therefore write transformation functions for ση, σν and φ,

sp500_partrans <- parameter_trans(

log=c("sigma_eta","sigma_nu"),

logit="phi"

)

17 / 38

We can now build a pomp object suitable for filtering, and parameter
estimation by iterated filtering or particle MCMC.

Note that the data are also placed in a covariate slot.

This is a device to allow the state process evolution to depend on the
data. In a POMP model, the latent process evolution depends only on
the current latent state. In pomp, the consequence of this structure is
that rprocess doesn’t have access to the observation process.

However, a POMP model does allow for the possibility for the basic
elements to depend on arbitrary covariates. In pomp, this means
rprocess has access to a covariate slot.

The code below gives an example of how to fill the covariate slot and
how to use it in rprocess.

18 / 38

pomp
rprocess
pomp
rprocess
rprocess

sp500.filt <- pomp(data=data.frame(

y=sp500.ret.demeaned,time=1:length(sp500.ret.demeaned)),

statenames=sp500_statenames,

paramnames=sp500_paramnames,

times="time",

t0=0,

covar=covariate_table(

time=0:length(sp500.ret.demeaned),

covaryt=c(0,sp500.ret.demeaned),

times="time"),

rmeasure=Csnippet(sp500_rmeasure),

dmeasure=Csnippet(sp500_dmeasure),

rprocess=discrete_time(step.fun=Csnippet(sp500_rproc.filt),

delta.t=1),

rinit=Csnippet(sp500_rinit),

partrans=sp500_partrans

)

19 / 38

Simulating from the model is convenient for developing and testing
the code, as well as to investigate a fitted model:

params_test <- c(

sigma_nu = exp(-4.5),

mu_h = -0.25,

phi = expit(4),

sigma_eta = exp(-0.07),

G_0 = 0,

H_0=0

)

sim1.sim <- pomp(sp500.filt,

statenames=sp500_statenames,

paramnames=sp500_paramnames,

rprocess=discrete_time(

step.fun=Csnippet(sp500_rproc.sim),delta.t=1)

)

sim1.sim <- simulate(sim1.sim,seed=1,params=params_test)

20 / 38

Now. to build the filtering object from sim1.sim, we need to copy
the new simulated data into the covariate slot, and put back the
appropriate version of rprocess.

sim1.filt <- pomp(sim1.sim,

covar=covariate_table(

time=c(timezero(sim1.sim),time(sim1.sim)),

covaryt=c(obs(sim1.sim),NA),

times="time"),

statenames=sp500_statenames,

paramnames=sp500_paramnames,

rprocess=discrete_time(

step.fun=Csnippet(sp500_rproc.filt),delta.t=1)

)

21 / 38

sim1.sim
rprocess

Filtering on simulated data

We check that we can indeed filter and re-estimate parameters
successfully for this simulated data.

As in previous case studies, we set up different run levels:

run_level <- 3

sp500_Np <- switch(run_level, 100, 1e3, 2e3)

sp500_Nmif <- switch(run_level, 10, 100, 200)

sp500_Nreps_eval <- switch(run_level, 4, 10, 20)

sp500_Nreps_local <- switch(run_level, 10, 20, 20)

sp500_Nreps_global <- switch(run_level, 10, 20, 100)

22 / 38

We carry out replications in parallel to assess Monte Carlo error.

library(doParallel)

registerDoParallel()

library(doRNG)

registerDoRNG(34118892)

stew(file=sprintf("pf1-%d.rda",run_level),{
t.pf1 <- system.time(

pf1 <- foreach(i=1:sp500_Nreps_eval,

.packages='pomp') %dopar% pfilter(sim1.filt,Np=sp500_Np))

},seed=493536993,kind="L'Ecuyer")
(L.pf1 <- logmeanexp(sapply(pf1,logLik),se=TRUE))

se

-3658.4583078 0.1434091

23 / 38

In 4.7 seconds, we obtain a log likelihood estimate of -3658.46 with a
Monte standard error of 0.14. Notice that the replications are
averaged using the logmeanexp function, since the likelihood
estimate is unbiased on the natural scale but not the log scale.

We could test the numerical performance of an iterated filtering
likelihood maximization algorithm on simulated data.

We could also study the statistical performance of maximum
likelihood estimators and profile likelihood confidence intervals on
simulated data.

However, here we are going to cut to the chase and start fitting
models to data.

24 / 38

logmeanexp

Fitting the stochastic leverage model to S&P500 data

We are now ready to try out iterated filtering on the S&P500 data.
We will use the IF2 algorithm of Ionides et al. (2015), implemented
by mif2.

sp500_rw.sd_rp <- 0.02

sp500_rw.sd_ivp <- 0.1

sp500_cooling.fraction.50 <- 0.5

sp500_rw.sd <- rw.sd(

sigma_nu = sp500_rw.sd_rp,

mu_h = sp500_rw.sd_rp,

phi = sp500_rw.sd_rp,

sigma_eta = sp500_rw.sd_rp,

G_0 = ivp(sp500_rw.sd_ivp),

H_0 = ivp(sp500_rw.sd_ivp)

)

25 / 38

mif2

stew(file=sprintf("mif1-%d.rda",run_level),{
t.if1 <- system.time({
if1 <- foreach(i=1:sp500_Nreps_local,

.packages='pomp', .combine=c) %dopar% mif2(sp500.filt,

params=params_test,

Np=sp500_Np,

Nmif=sp500_Nmif,

cooling.fraction.50=sp500_cooling.fraction.50,

rw.sd = sp500_rw.sd)

L.if1 <- foreach(i=1:sp500_Nreps_local,

.packages='pomp', .combine=rbind) %dopar% logmeanexp(

replicate(sp500_Nreps_eval, logLik(pfilter(sp500.filt,

params=coef(if1[[i]]),Np=sp500_Np))), se=TRUE)

})
},seed=318817883,kind="L'Ecuyer")

r.if1 <- data.frame(logLik=L.if1[,1],logLik_se=L.if1[,2],

t(sapply(if1,coef)))

if (run_level>1) write.table(r.if1,file="sp500_params.csv",

append=TRUE,col.names=FALSE,row.names=FALSE)

26 / 38

This investigation took 25.9 minutes.

The repeated stochastic maximizations can also show us the geometry
of the likelihood surface in a neighborhood of this point estimate:

pairs(~logLik+sigma_nu+mu_h+phi+sigma_eta,

data=subset(r.if1,logLik>max(logLik)-20))

27 / 38

Likelihood maximization using randomized starting values

As for our other case studies, carrying out searches starting randomly
throughout a large box can lead to reasonble evidence for successful
global maximization.

For our volatility model, a box containing plausible parameter values
might be

sp500_box <- rbind(

sigma_nu=c(0.005,0.05),

mu_h =c(-1,0),

phi = c(0.95,0.99),

sigma_eta = c(0.5,1),

G_0 = c(-2,2),

H_0 = c(-1,1)

)

28 / 38

stew(file=sprintf("box_eval-%d.rda",run_level),{
t.box <- system.time({
if.box <- foreach(i=1:sp500_Nreps_global,

.packages='pomp',.combine=c) %dopar% mif2(if1[[1]],

params=apply(sp500_box,1,function(x)runif(1,x)))

L.box <- foreach(i=1:sp500_Nreps_global,

.packages='pomp',.combine=rbind) %dopar% {
logmeanexp(replicate(sp500_Nreps_eval, logLik(pfilter(

sp500.filt,params=coef(if.box[[i]]),Np=sp500_Np))),

se=TRUE)

}
})

},seed=290860873,kind="L'Ecuyer")

r.box <- data.frame(logLik=L.box[,1],logLik_se=L.box[,2],

t(sapply(if.box,coef)))

if(run_level>1) write.table(r.box,file="sp500_params.csv",

append=TRUE,col.names=FALSE,row.names=FALSE)

summary(r.box$logLik,digits=5)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-4009 -3968 -3957 -3965 -3956 -3954 29 / 38

This search took 127.4 minutes.

The best likelihood found was -3954.1 with a standard error of 0.2.

We see that optimization attempts from diverse remote starting
points can approach our MLE, but do not exceed it. This gives us
some reasonable confidence in our MLE.

Plotting these diverse parameter estimates can help to give a feel for
the global geometry of the likelihood surface

30 / 38

pairs(~logLik+log(sigma_nu)+mu_h+phi+sigma_eta+H_0,

data=subset(r.box,logLik>max(logLik)-10))

31 / 38

This preliminary analysis does not show clear evidence for the
hypothesis that σν > 0.

That is likely because we are studying only a subset of the 1988 to
2012 dataset analyzed by Bretó (2014).

Also, it might help to refine our inference be computing a likelihood
profile over σν .

32 / 38

Benchmark likelihoods for alternative models

To assess the overall success of the model, it is helpful to put the log
likelihoods in the context of simpler models, called benchmarks.

Benchmarks provide a complementary approach to residual analysis
and the investigation of simulations from the fitted model.

The GARCH(1,1) model for this dataset has a maximized likelihood
of -4019.7 with 3 fitted parameters.

Our stochastic volatility model, with time-varying leverage, model has
a maximized log likelihood of -3954.1 with 6 fitted parameters. AIC
favors the stochastic volatility model.

A model which both fits better and has meaningful interpretation has
clear advantages over a simple statistical model.

The disadvantage of the sophisticated modeling and inference is the
extra effort required.

33 / 38

Can a mechanistic model be helpful if it loses to a
non-mechanistic alternative?

Sometimes, the mechanistic model does not beat simple benchmark
models. That does not necessarily mean the mechanistic model is
entirely useless.

We may be able to learn about the system under investigation from
what a scientifically interpretable model fails to explain.

We may be able to use preliminary results to improve the model, and
subsequently beat the benchmarks.

If the mechanistic model fits disastrously compared to the benchmark,
our model is probably missing something important. We must
reconsider the model, based on clues we might obtain by carrying out
residual analysis and looking at simulations from the fitted model.

34 / 38

Appendix: Proper weighting for a partially plug-and-play
algorithm with a perfectly observed state space component

Suppose a POMP model with latent variable Xn = (Un, Vn) and
observed varaible Yn has conditional density fYn|Vn(yn|vn) depending
only on Vn.
The proper weight for an SMC proposal density qn(xn|xn−1) is

wn(xn|xn−1) =
fYn|Xn

(yn|xn)fXn|Xn−1
(xn|xn−1)

qn(xn|xn−1)
.

Consider the proposal qn(un, vn|xn−1) = fUn|Xn−1
(un|xn−1)gn(vn).

This is partially plug-and-play, in the sense that the Un part of the
proposal is drawn from a simulator of the dynamic system.
Computing the weights, we see that the transition density for the Un
component cancels out and does not have to be computed, i.e.,

wn(xn|xn−1) =
fYn|Vn(yn|vn)fUn|Xn−1

(un|xn−1)fVn|Un,Xn−1
(vn|un, xn−1)

fUn|Xn−1
(un|xn−1)gn(vn)

=
fYn|Vn(yn|vn)fVn|Un,Xn−1

(vn|un, xn−1)
gn(vn)

.
35 / 38

Now consider the case where the Vn component of the state space is
perfectly observed, i.e., Yn = Vn. In this case,

fYn|Vn(yn|vn) = δ(yn − vn),

interpreted as a point mass at vn in the discrete case and a singular
density at vn in the continuous case.

We can choose gn(vn) to depend on the data, and a natural choice is

gn(vn) = δ(yn − vn),

for which the proper weight is

wn(xn|xn−1) = fYn|Un,Xn−1
(yn|un, xn−1).

This is the situation in the context of our case study, with
Un = (Gn, Hn) and Vn = Yn.

36 / 38

Acknowledgments and License

Produced with R version 3.6.2 and pomp version 2.7.

These notes build on previous versions at
ionides.github.io/531w16 and ionides.github.io/531w18.

Licensed under the Creative Commons attribution-noncommercial
license, http://creativecommons.org/licenses/by-nc/3.0/.
Please share and remix noncommercially, mentioning its origin.

37 / 38

pomp
ionides.github.io/531w16
ionides.github.io/531w18
http://creativecommons.org/licenses/by-nc/3.0/

References I

Bretó, C. (2014). On idiosyncratic stochasticity of financial leverage
effects, Statistics & Probability Letters 91: 20–26.

Cowpertwait, P. S. and Metcalfe, A. V. (2009). Introductory time series
with R, Springer Science & Business Media.

Ionides, E. L., Nguyen, D., Atchadé, Y., Stoev, S. and King, A. A. (2015).
Inference for dynamic and latent variable models via iterated, perturbed
Bayes maps, Proceedings of the National Academy of Sciences of the
U.S.A. 112(3): 719–724.

38 / 38

	References

