
STATS 531
Winter, 2018

Midterm Exam

We investigate some data from neurophysiology. Neurons communicate by generating pulses of
electrical charge known as firing events. An electrode implanted (painlessly) into a monkey’s
brain records a sequence of firing events for an individual neuron cell. Suppose the firing times
are F1, F2, . . . , FN+1, measured in milliseconds (1ms is 10−3s). We take as our time series x∗n =
Fn+1 − Fn with n = 1, . . . , N . This is the series of times intervals between firing events. The data,
with N = 415, are plotted in Fig. 1. We wish to model x∗1:N in order to quantify the behavior
of the neuron, to later compare it with other neurons and investigate the effects of experimental
treatments.
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Figure 1: Time series x∗1:N of time (in milliseconds) between subsequent firings of a monkey neuron.

SECTION A. We start with a linear time series analysis of x∗1:N . The sample autocorrelation
function of x∗1:N is shown in Fig. 2.

A1. [2 pts] What does Fig. 2 suggest to you about suitable ARMA models to model x∗1:N , and
why?

There is no single clear-cut answer. The sample ACF is within the dashed lines
after lag 1, but shows some indication of decreasing like a damped oscillation (an
AR(2) property). The fairly rapid decay of the sample ACF to values close to zero
is consistent with mean stationarity but doesn’t give much evidence for or against
covariance stationarity. Anything between AR(1) and ARMA(2,2) can be defended
by inspecting Fig. 2.

A2. [2 pts] Another way to select a model is by comparing AIC values. A table of AIC values is
shown in Table 1. What ARMA model(s) would you consider based on this table, and why?

ARMA(2,2) has the lowest AIC, so is favored by this criterion. ARMA(2,1) and
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Figure 2: Sample autocorrelation function of x∗1:N .

MA0 MA1 MA2 MA3

AR0 3966.0 3961.5 3962.7 3964.7
AR1 3961.1 3962.6 3964.6 3966.6
AR2 3962.7 3960.5 3959.8 3961.7
AR3 3964.6 3965.5 3962.6 3968.4

Table 1: AIC values from fitting ARMA(p,q) models to x∗1:N .

ARMA(1,0) are simpler models which also have promising AIC values. Other consid-
erations, such as proximity to reducibility, non-invertibility or non-causality, may also
play a role in model selection. We will also see, later in the exam, that in fact none
of these models are particularly appropriate.

A3. [2 pts] Find the log likelihood of an ARMA(2,1) model, and explain your calculation.

AIC = −2λ + 2k, where λ is the maximized log likelihood and k is the number of
parameters. Here, k = 5 since the parameter vector is (φ1, φ2, θ1, µ, σ

2), so

λ =
3960.5− 10

−2
= −1975.25

.

A4. [3 pts] Does the table of AIC values contain any evidence for or against the claim that the
likelihood is correctly calculated and maximized? Explain.

The table is inconsistent — adding a parameter can only increase the maximized log-
likelihood, i.e. the AIC can only increase by ≤ 2 Compare ARMA(3,3) to ARMA(3,2).
This can only come about by imperfect likelihood calculation and/or maximization.
We may suspect a problem with likelihood maximization.

SECTION B. Fitting an ARMA(2,2) model gives the following R output.

arma22 <- arima(x,order=c(2,0,2)) ; arma22

##

## Call:

## arima(x = x, order = c(2, 0, 2))
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##

## Coefficients:

## ar1 ar2 ma1 ma2 intercept

## 1.6009 -0.6445 -1.4982 0.5219 26.4163

## s.e. 0.1886 0.1839 0.2104 0.2094 0.7954

##

## sigma^2 estimated as 791.7: log likelihood = -1973.88, aic = 3959.76

B1. [4 pts]. Write out the fitted model, carefully stating all the assumptions behind the model
used by R to generate this output.

The fitted model is

Xn = 26.4 + 1.60(Xn−1 − 26.4)− 0.64(Xn−2 − 26.4) + εn − 1.50εn−1 + 0.5εn−2

where {εn} is white noise with standard deviation 28.1. The likelihood calculation also
assumes that {εn} is Gaussian, i.e. an independent sequence with εn ∼ N(0, 28.12).
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Figure 3: Sample autocorrelation function of the residuals from fitting an ARMA(2,2) model to
x∗1:N .

B2. [3 pts] Fig. 3 shows the ACF of the residuals from fitting an ARMA(2,2) model. Comment on
which modeling assumptions are investigated by this figure, and whether they are consistent with
the data.

Fig. 3 supports the assumptions that the driving noise process is uncorrelated and has
no trend. It does not reveal anything about the assumptions that the driving noise is
(i) constant variance or (ii) Gaussian.

The roots of the AR and the MA polynomials for the fitted ARMA(2,2) model are computed as
follows:

AR_roots <- polyroot(c(1,-coef(arma22)[c("ar1","ar2")])) ; AR_roots

## [1] 1.24194+0.095596i 1.24194-0.095596i

MA_roots <- polyroot(c(1,coef(arma22)[c("ma1","ma2")])) ; MA_roots

## [1] 1.055662-0i 1.814977+0i
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B3. [3 pts] Is there evidence for parameter redundancy? Do these roots raise any other potential
concerns?

The AR roots ar not very close to the MA roots, so there is no strong suggestion of
parameter redundancy in the fitted model. One of the MA roots (1.055) is close to
the unit circle, so the fitted model is close to non-invertibility. This could potentially
cause numerical instability. It also suggests that the standard errors based on Fisher
information may be unreliable, as we discovered in the class notes.

Simulations from the fitted ARMA(2,2) model were computed as follows:

arma22<-arima(x,order=c(2,0,2))

Nt<-length(x)

sim<-rep(0,Nt)

set.seed(1)

w<-rnorm(Nt,m=0,sd=sqrt(arma22$sigma2))

for(nt in 3:Nt){
sim[nt]<-arma22$coef["ar1"]*sim[nt-1]+arma22$coef["ar2"]*sim[nt-2]+

arma22$coef["ma1"]*w[nt-1]+arma22$coef["ma2"]*w[nt-2]+w[nt]

}
sim<-sim+arma22$coef["intercept"]

B4. [2 pts] Sample simulation output is shown in Fig. 4. What does a comparison of Fig. 4 with
Fig. 1 say about ARMA modeling of x∗1:N?

Almost all well-considered and comprehensible answers are acceptable here. The plots
look quite different. Fig. 1 is always positive, and appears to have some regularity
to the peaks. Fig. 4 has less pronounced peaks, is more symmetric about its mean,
and occasionally becomes negative. The data do not resemble a Gaussian ARMA(2,2)
process.
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Figure 4: A simulation from the fitted ARMA(2,2) model

B5. [2 pts] Is the random process generated in B4 and plotted in Fig. 4 formally stationary? Answer
yes or no, and explain.
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Not quite. The initial values contradict having a constant variance (the initial variance
is zero). However, the process is asymptotically stationary. One could make the
simulations effectively stationary by throwing away some number (say 100) values at
the start of the simulation.

SECTION C. We now investigate a logarithmic transformation of the data. Let z∗1:N be the log10
transformation of x∗1:N , so z∗n = log10(x

∗
n) for n ∈ 1 :N . Below is the R output from fitting an

ARMA(2,2) model to z∗1:N .

##

## Call:

## arima(x = z, order = c(2, 0, 2))

##

## Coefficients:

## ar1 ar2 ma1 ma2 intercept

## 1.6974 -0.7249 -1.4647 0.4647 1.2925

## s.e. 0.0740 0.0718 0.0941 0.0939 0.0021

##

## sigma^2 estimated as 0.07637: log likelihood = -56.79, aic = 125.59
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Figure 5: (a) Time plot of z∗1:N . (b) Sample autocorrelation function of z∗1:N .

C1. [2 pts] Is there any indication from Fig. 5 and the R fitted model output in Sections B and C
that ARMA modeling is more successful after a log transformation? or less? Explain.

The model printouts do not directly tell us whether the transformation is appropriate:
in particular, the AIC values are not directly comparable, though in principle one can
figure out how to transform the likelihood appropriately to make them comparable.
The sample ACF is also trick to interpret as evidence for the success of the transfor-
mation. The additional dependence appearing in the sample ACF of z∗1:N is not a bad
thing—in fact, it may be a clue that the log transformation is the right scale to see
linear dependence in the data as measured by covariance. The time plot looks more
symmetric on the transformed scale, and symmetry is a property of Gaussian ARMA
models so this is encouraging.

C2. [2 pts] What do Figs. 3, 6 and 7 indicate about the success of the log transform?

Figs. 3 and 6 show that the residuals appear uncorrelated with or without the log
transform. Fig. 7 shows that the residuals look much more like Gaussian white noise
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Figure 6: Sample autocorrelation function of the residuals from fitting an ARMA(2,2) model to
z∗1:N .
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Figure 7: (a) Residuals from fitting an ARMA(2,2) model to x∗1:N . (b) Residuals from fitting an
ARMA(2,2) model to the log transformed data, z∗1:N .

after the transform. In particular, the residuals are asymmetric—with a long right
tail—for Fig. 7(a), which is inconsistent with a Gaussian model. Since the models
are fitted using Gaussian maximum likelihood, this is a good thing. We could confirm
this finding by a normal quantile plot.

C3. [3 pts] Fig. 8 shows the smoothed periodogram of z∗1:N . Find the frequency and period
corresponding to the peak in the periodogram. Your answer should include the units of these
quantities. Describe briefly what this peak leads you to conclude about how this monkey neuron
behaves.

The peak at frequency approx. 0.06 cycles/firing event (or period approx. 16.7 firing
events) is due to the neuron firing in a burst (several short inter-event times) and
then being less active (long inter-event times) with a characteristic period of approx.
17 firing events.
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Figure 8: Smoothed periodogram of z∗1:N .
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