
STATS 531
Winter, 2020

Midterm Exam

We investigate a time series on over-crowding in the Emergency Room of the University of Michigan
Hospital. The data, y1:N with N = 24 ∗ 365, are hourly occupancy fractions for one year, starting
July 1st 2005. Occupancy fraction is defined to be the mean number of patients in the ER during
each hour divided by the total number of beds available (the ER operates 24 hours a day, 7 days
a week, 365 days a year). Note that the occupancy fraction, shown in Fig. 1, can exceed one. The
purposes of investigating these data are to predict future occupancy, and to make progress toward
relating ER overcrowding with other variables such as errors in medical procedures.

Figure 1: Hourly occupancy fraction at the University of Michigan Emergency Room

Figure 2: (A) Smoothed periodogram of y1:N . (B) sample auto-correlation function of y1:N
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SECTION A. Fig. 2 shows a smoothed periodogram and an ACF of the data.

A1. [1 point] What are the units of frequency in Fig. 2A? Explain your reasoning. Hint: Care is
needed to make allowance for the x-axis truncation pointed out below.

From figure 2B, we see a strong daily cycle and small additional correlation at 7 days (1 week).
The strong 1 cycle/day peak is evident at frequency 1 in Fig. 2A, so units must be cycles/day.

A2. [2 points] Explain how you can tell that the periodogram in Fig. 2A has been truncated to
exclude high frequencies (this is done to show more clearly the information at lower frequencies).

The highest frequency on a periodogram is 0.5 cycles per observation. This corresponds to 12 cycles
per day. The axis has therefore been cut at frequency = 3 cycles per day.

A3. [3 points] Using Fig. 2, can you reject a null hypothesis that there is no weekly pattern to
occupancy fraction? Explain. Hint: the bar top right in Fig. 2A may be useful, though the horizonal
cross for this bar is small and hard to see.

A confidence interval around the peak at frequency 1/7 cycles/day, constructed using the error bar
in Fig. 2A, excludes the base of this peak. Thus, we can reject the null hypothesis that this peak is
chance variation.

SECTION B. Fig. 1 suggests that the occupancy could be modeled by a random process Y1:N
whose expected value µn = E[Yn] is slowly varying with time. The variation around the mean in
Fig. 1 appears quite stable. Thus, it may be reasonable to model yn−µ̂n as a stationary process, with
µ̂n constructed using local regression. This is done here using the R command mu.hat=loess(y∼
time,span=0.5)$fitted. The estimate µ̂t of µn is shown in Fig. 3.

Figure 3: Estimate µ̂n of the mean hourly occupancy fraction µn. Time is shown in days.

B1. [2 points] Briefly describe what is a “local regression estimate”.

A window around each time point is used to construct a regression estimate. Here, linear regression
is carried out over all the data points falling into the window.

B2. [2 points] The dashed lines in Fig. 3 show an approximate 95% confidence interval, constructed
by adding ±2SE where SE is the standard error on the estimate of the mean, as calculated by the
local regression. Is this interval appropriate? Explain. Hint: it may help you to think about what
you know about ordinary linear regression.

We know from Fig. 2A that the time series has considerable autocorrelation. An ordinary regression
estimate still gives a reasonable point estimate in this situation, but the resulting standard errors
should not be trusted.
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B3. [2 points] Could the data be consistent with a model where the mean is not varying with time,
e.g. a stationary process? Say yes or no, and explain.

Yes. The low frequency behaviour could be part of a random, long-term pattern.

SECTION C. We investigate whether a stationary model is appropriate for the detrended occu-
pancy fraction zn = yn − µ̂n. In particular, we compare the two time intervals August/September
2005 and March/April 2006. First, we fit an ARIMA(1, 0, 1)×(1, 0, 1)24 model to the 61 days in
August and September 2005. Below is the R output.

##

## Call:

## arima(x = z[AugSep], order = c(1, 0, 1), seasonal = list(order = c(1, 0, 1),

## period = 24))

##

## Coefficients:

## ar1 ma1 sar1 sma1 intercept

## 0.9139 0.0403 0.9998 -0.9884 -0.0060

## s.e. 0.0114 0.0277 0.0002 0.0080 0.1354

##

## sigma^2 estimated as 0.006561: log likelihood = 1568.48, aic = -3124.96

C1. [3 points] Write out the fitted model corresponding to the R output above, carefully stating
all the model assumptions.

The fitted model is

(1− 0.9990B24)(1− 0.9139B)(yt + 0.006) = (1− 0.9884B24)(1 + 0.0403B)wt,

where wt are independent Gaussian random variables with mean 0 and variance 0.006561.

Figure 4: Investigation of the residuals from fitting an ARIMA(1, 0, 1)×(1, 0, 1)24 model to de-
trended occupancy for August/September. (A) Sample ACF. (B) Normal quantile plot, which
plots the sorted residuals against the corresponding quantiles of the standard normal distribution.

C2. [2 points] What do you conclude from the diagnostic plots in Fig. 4? Also, explain at least
one relevant property that is NOT checked by these diagnostic plots, and describe how you could
check it.
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From the normal quantile plot in B, we conclude that the distribution of the residuals is close to
normal, which supports the normality assumption about wt. From A, we conclude that the residuals
appear to be uncorrelated. None of these diagnostics check for the stationarity of the process. One
could check this by looking at the time plot of the residuals to see if there is any trend or pattern left
and to see if the variability around the mean appears to be constant. Autocovariance stationarity
could also be checked showing that the sample autocovariance function was similar at different
intervals of the series.

C3. [3 points] Explain why the results in Fig. 4 and the R model for the fittedARIMA(1, 0, 1)×(1, 0, 1)24
might support the choice of any of (a) SARIMA(1, 0, 1)×(1, 0, 1)24, (b) SARIMA(1, 0, 1)×(0, 1, 1)24,
or (c) SARIMA(1, 0, 1)×(0, 0, 0)24. Explain which of these choices you think is best supported.

Fig. 4 is consistent with the choice of ARIMA(1, 0, 1)×(1, 0, 1). The estimate for the seasonal AR1
parameter, Φ1 from the R output is very close to 1. When Φ1 = 1, an ARIMA(1, 0, 1)× (1, 0, 1)24
is equal to an ARIMA(1, 0, 1) × (0, 1, 1)24, so this should be an acceptable (and slightly simpler)
model as well. However, on closer inspection, the two roots in the seasonal component almost
cancel, which suggests instead considering SARIMA(1, 0, 1)×(0, 0, 0)24.

(A)

MA0 MA1 MA2
AR0 -378.9 -1612.9 -2258.7
AR1 -3060.0 -3058.8 -3057.2
AR2 -3058.8 -3057.1 -3055.2
AR3 -3057.2 -3054.8 -3059.2

(B)

MA0 MA1 MA2
AR0 193.6 -1168.5 -1844.2
AR1 -2944.9 -2944.4 -2943.2
AR2 -2944.5 -2943.1 -2941.3
AR3 -2943.2 -2941.3 -2939.6

Table 1: AIC values from fitting ARIMA(p, 0, q)×(0, 1, 1)24 models to (A) August/September 2005,
(B) March/April 2006.

SECTION D. We do some more analysis comparing the two time intervals August/September
2005 and March/April 2006.

D1. [2 points] A comparison of various models is presented in Table 1. Is there any conclusive
evidence of imperfect likelihood maximization from these AIC values? Explain.

For example, -3054.8 for ARMA(3,1) is more than 2 higher than the ARMA(2,1) value of -3057.1.
The true maximized log likelihood cannot be lower for ARMA(3,1) so the true AIC cannot be more
than 2 higher.

D2. [2 points] What do you learn from the AIC values in Table 1 about choice of models for these
data and the appropriateness (or otherwise) of fitting a stationary model to the entire time series.

We conclude from tables that an ARIMA(1, 0, 0)×(0, 1, 1)24 seems to be preferable, with the smallest
AIC in both periods. As an extra word of caution, we cannot compare the AIC values in the tables
with the -3124.96 value for ARIMA(1, 0, 0)× (1, 0, 1) because the data have been transformed, i.e.
differences have been taken.

Below is the R output from fitting an ARIMA(1, 0, 0)×(0, 1, 1)24 model to detrended occupancy
for August/September 2005 and March/April 2006.

##

## Call:

## arima(x = z[AugSep], order = c(1, 0, 0), seasonal = list(order = c(0, 1, 1),

## period = 24))

##
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## Coefficients:

## ar1 sma1

## 0.9195 -1.0000

## s.e. 0.0104 0.0197

##

## sigma^2 estimated as 0.006496: log likelihood = 1533, aic = -3060

##

## Call:

## arima(x = z[MarApr], order = c(1, 0, 0), seasonal = list(order = c(0, 1, 1),

## period = 24))

##

## Coefficients:

## ar1 sma1

## 0.9436 -1.0000

## s.e. 0.0088 0.0341

##

## sigma^2 estimated as 0.007036: log likelihood = 1475.46, aic = -2944.92

D3. [4 points] Show how to use this output to carry out an approximate hypothesis test that the
AR1 component is the same for August/September 2005 and March/April 2006 in the context of
an ARIMA(1, 0, 0)×(0, 1, 1)24 model for detrended occupancy. Explain what your approximations
are for this test. How good do you think these approximations are, and how could you check? Note:
since you are not provided with statistical tables, you are not required to calculate a p-value.

Letting φ1 and φ2 be the AR1 coefficients for the first and second intervals, we wish to test the
hypothesis

H0 : φ1 = φ2

H1 : φ1 6= φ2.

Since we know that, asymptotically, φ̂i ∼ N(φi, σ
2
φi

), a test statistic that can be used (and is available
from the R output above) is

Z =
φ̂1 − φ̂2√
σ̂2φ1 + σ̂2φ2

,

where σ̂φi = s.e.(φ̂i). Here, we would have to rely on the central limit theorem for the MLE and on
the MLEs being uncorrelated for the 2 time intervals. The statistic comes out to be

z =
0.9195− 0.9436√
0.01042 + 0.00882

= −1.769

This is within the acceptance region ±1.96, so we cannot reject the null hypothesis at the 5% level.
The test seems to be based in enough data for the asymptotic approximation to be useful. One could
check this and the assumed correlation by simulating from the fitted model and checking what the
actual p-value is for some confidence level.
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