
STATS 401. Applied Statistical Methods II

Chapter 1. Getting started

Welcome!

Objectives: Linear statistical models are the foundation for most of
applied statistics. We will develop statistical computation skills (R
programming) and mathematical skills (working with matrices and
probabilities) while studying data analysis using linear models.

Course information: The syllabus on the course website
ionides.github.io/401f18 has a course outline, comments on
pre-requisites, exam times, and other relevant information.

ionides.github.io/401f18


An outline of a data analysis

• A typical data analysis has the following steps:

1 Obtain data and read it into R
2 Plot the data
3 Develop a model
4 Estimate parameters and test hypotheses of interest
5 Interpret the results

• All these steps involve statistical computing, either doing it or
interpreting results from it.

• The two rising stars in statistical computing are R and Python
(http://r4stats.com/articles/popularity/). Generally, R is
preferred for data analysis, and Python for larger programming projects.

We live in an era of abundant data. Learn R!

http://r4stats.com/articles/popularity/


Getting started with R

• Some statistical software packages operate by selecting menu options.

• For example, this is the basic way of using R Commander.

Question 1.1. Why should we prefer to use the command line form of R
rather than point-and-click menu options?

• Homework 0 involves installing R and RStudio on your laptop.

• The R package swirl teaches R in R. See Homework 1.

• R code is given in the notes.

• The course website also has links for the R code extracted from the
notes. For example, ionides.github.io/401f18/01/notes01.R

• Typing commands and seeing what happens is a good way to learn R.

swirl
ionides.github.io/401f18/01/notes01.R


Case study: Are people healthier in booms or busts?

• Is population health pro-cyclical (improving in business cycle booms) or
counter-cyclical (improving in recessions), or neither?

• We will analyze data on annual death rates to investigate this.

• Life expectancy at birth combines instantaneous death rates at all
ages and is a basic measure of current population health.

• Life expectancy in 2017 is the average lifespan of a fictitious person
whose probability of dying at age 10 matches mortality of 10-year-olds in
2017, and the probability at age 50 matches 50-year-olds in 2017.
(data.oecd.org/healthstat/life-expectancy-at-birth.htm).

• USA data for 1933–2015 are in the file life_expectancy.txt on the
class website.

• We could read the data into R directly from a website, but it is good
data analysis practice to make your own local copy. Here is a way to do
that in R:

download.file(destfile="life_expectancy.txt",

url="https://ionides.github.io/401f18/01/life_expectancy.txt")

data.oecd.org/healthstat/life-expectancy-at-birth.htm
life_expectancy.txt


Inspecting the raw data file

• The raw data can be viewed as a plain text file.

Question 1.2. We work with data in a plain text format. Spreadsheets can
be saved to .txt or .csv format. Why is this good data analysis practice?

• The first lines of the life expectancy data file are:

# The United States of America, Life expectancy at birth.

# Downloaded from Human Mortality Database on 30 Oct 2017.

# HMD request that you register at http://www.mortality.org

# if you use these data for research purposes.

Year Female Male Total

1933 62.78 59.17 60.88

1934 62.34 58.34 60.23

• Lines marked with # are comments that are ignored by R.

.txt
.csv
#


Read the data into R and then inspect it

L <- read.table(file="life_expectancy.txt",header=TRUE)

• The function read.table() reads data from a file to make a data
matrix in R.

• The assignment operator <- gives this matrix the name L.

• The argument file="life_expectancy.txt" names the file.

• header=TRUE tells R to treat the first row as column names.

• Let’s look at the first three rows of L using the function head().

head(L,3)

## Year Female Male Total

## 1 1933 62.78 59.17 60.88

## 2 1934 62.34 58.34 60.23

## 3 1935 63.04 58.96 60.89

• Check this matches the data file. Reading data correctly can be fiddly.

read.table()
<-
L
file="life_expectancy.txt"
header=TRUE
L
head()


A comment on the assignment operator

• We read the assignment operator <- as “gets”.

• The assignment above is read as “L gets the data in
life_expectancy.txt”.

• We could equivalently have used =

L = read.table(file="life_expectancy.txt",header=TRUE)

• You will see both <- and = used for assignment.

Question 1.3. <- is slightly better coding practice than =. Why?

<-
L
life_expectancy.txt
=
<-
=
<-
=


Using matrix indexing to identify entries in the dataset

• Each entry in a data matrix can be identified by its row and column
index.

• We can use matrix indexing to read and manipulate entries of L.

L[2,3]

## [1] 58.34

• L[i,j] is the row i column j entry of L.

• Most datasets have this matrix form, also called rectangular data.

• Each row is a measured object (a person, a car, an experiment, a
country) generically called a unit.

• The columns lists variables measured for each unit.

Question 1.4. For the life expectancy data, what are the units? What are
the variables?

L
L[i,j]
i
j
L


Selecting rows or columns of a matrix

• Above, we used the function head() to see the first 3 rows of L.

• We could have used matrix indexing.

L[1:3,]

## Year Female Male Total

## 1 1933 62.78 59.17 60.88

## 2 1934 62.34 58.34 60.23

## 3 1935 63.04 58.96 60.89

• 1:3 is the sequence 1,2,3.

• The blank space after the comma in L[1:3,] requests all the columns
for the specified rows.

head()
L
1:3
1,2,3
L[1:3,]


Vectors in R

• A numeric vector in R is a sequence of numbers.

• One way to make a vector is to use the concatenation function, c().

v <- c(3,1,4,1,5,9)

v

## [1] 3 1 4 1 5 9

• c(1,2,3,4,5,6) can be written as 1:6

• Elements of a vector can be extracted using [].

v[3]

## [1] 4

Question 1.5. What do you think is the value of v[c(2,6)] and v[3:5]?

c()
c(1,2,3,4,5,6)
1:6
[]
v[c(2,6)]
v[3:5]


Matrices and their dimensions

• Mathematically, we write L =


`11 `12 . . . `1p
`21 `22 . . . `2p

...
...

. . .
...

`n1 `n2 . . . `np

.

• We say L is a matrix with dimension n× p.

• It is common to use n for the number of rows, corresponding to the
number of measured units.

• We will see that p is common notation for the number of variables.

• To get the dimension in R, we use the dim() function.

dim(L)

## [1] 83 4

• We say that L is a matrix with n=83 rows and p=4 columns.

dim()
L
n=83
p=4


Extracting rows and columns from a matrix

• In R, a single row or column of a matrix is a vector.

• For example, we can extract the first 5 entries for total life expectancy,
which is the fourth column of L, as follows.

L[1:5,4]

## [1] 60.88 60.23 60.89 60.35 61.05

• We can also use row and column names:

L[1:5,"Total"]

## [1] 60.88 60.23 60.89 60.35 61.05

• We need "" so that R knows Total is text not a variable name.

Question 1.6. What is going on in this peculiar example?

Total <- "Female"

L[1:5,Total]

## [1] 62.78 62.34 63.04 62.60 63.37

L
""
Total


Vectors in R are not matrices

• A vector in R has a length but not a dim.

• We have already found the dimension of the data matrix L,

dim(L)

## [1] 83 4

• Let’s set y to be the fourth column of the data and see its dimension:

y <- L[,4]

dim(y)

## NULL

• However, y does have a length, equal to the number of rows:

length(y)

## [1] 83

length
dim
L
y
y
length


Addition and multiplication of vectors in R

• Let’s see what happens when we add two vectors:

u <- c(3,1,4)

v <- c(1,5,9)

u+v

## [1] 4 6 13

• Vectors are added elementwise.

• They also multiply elementwise:

u*v

## [1] 3 5 36

• In R, many functions apply elementwise. This is useful for data analysis:
we often want to do the same operation to each data point.



Addition and multiplication of a vector with a scalar

• A single number is called a scalar or a constant.

• Let’s see what happens when we add and muliply with a scalar.

u <- c(3,1,4)

a <- 5

u+a

## [1] 8 6 9

• The constant is added to each element of the vector.

• The same rule applies for multiplying a vector and a scalar:

u*a

## [1] 15 5 20

• The rules in R aim to be convenient for data analysis. This is often the
case, but we still have to learn what R does and check it is doing what we
want.



Calculating the increase in life expectancy

• As above, set y to be a vector of life expectancy at birth each year, for
men and women combined:

y <- L[,"Total"]

• To obtain the increase in life expectancy each year over the previous
year,

g <- y[2:length(y)] - y[1:(length(y)-1)]

Question 1.7. Write out the expression for the elements g[1] and g[2]

in terms of elements of y. This should convince you whether our
calculation is correct.

y
g[1]
g[2]
y


NA and NULL values in R

• Increase in life expectancy is not available for the first year it is
measured.

length(y)

## [1] 83

length(g)

## [1] 82

• To make include this missing value and make the data vectors equal
length, let’s set the first increase to NA,

g <- c(NA,g)

g[1:8]

## [1] NA -0.65 0.66 -0.54 0.70 1.34 0.68 0.16

• Now we’ve seen two of R’s special non-numeric values. NULL means
“doesn’t exist”. NA means “not available” or “missing”. Data matrices
can have NA entries but not NULL. R tries to treat missing data
appropriately.

NA
NULL
NA
NULL
NA
NA
NULL


Logical vectors in R

• Elements of logical vectors are TRUE or FALSE.

• One way to get a logical vector in R is to test for equality or inequality
using >, < or ==.

• To find years with decreasing life expectancy:

g[1:6]

## [1] NA -0.65 0.66 -0.54 0.70 1.34

L_down <- g<0

L_down[1:6]

## [1] NA TRUE FALSE TRUE FALSE FALSE

• As we might expect, > is calculated elementwise.

• We can index using a logical vector:

year <- L[,"Year"]

years_down <- year[L_down]

years_down[1:6]

## [1] NA 1934 1936 1943 1957 1960

TRUE
FALSE
>
<
==
>


Character vectors in R

• Elements of character vectors are strings of letters and symbols.

• Qualitative data are often represented as character strings:

L_qualitative <- ifelse(g<0,"decreased","increased")

L_qualitative[1:6]

## [1] NA "decreased" "increased" "decreased"

## [5] "increased" "increased"

Question 1.8. Guess how ifelse() works. Is is elementwise?

• You can check the R help on ifelse() by typing

?ifelse

• It takes some practice to learn to read R help effectively!

ifelse()
ifelse()


Checking the class of an R object

• The class function tells us what data type R is working with

class(g)

## [1] "numeric"

class(L_down)

## [1] "logical"

class(L_qualitative)

## [1] "character"

• It is often useful to look at the class of a new R object you have made,
to see if it is what you think it is!

class


R data structures: dataframes and matrices

• A matrix in R must have all entries of the same class. The mathematics
of fitting a linear statistical model will require numeric data.

• For example, to convert data to a numeric representation for statistical
analysis, L_down or L_qualitative could be coded using 0 for FALSE
(or "increased") and 1 for TRUE (or "decreased").

• A dataframe in R may have different classes in each column. Data are
usually stored in dataframes, e.g., read.table() generates a dataframe.

class(L)

## [1] "data.frame"

L_matrix <- as.matrix(L)

class(L_matrix)

## [1] "matrix"

• For many purposes, dataframes and matrices behave the same.

• R has many ways of working with data like the Innuit have many words
for snow (wikipedia:Eskimo_words_for_snow).

L_down
L_qualitative
0
FALSE
"increased"
1
TRUE
"decreased"
read.table()
wikipedia:Eskimo_words_for_snow


Getting help with R

• Learning a new computing language is frustrating.

• Try to debug your code for a reasonable time and then start working up
the resources until the problem is solved.

• The following order is a guide:

1 The R help, e.g., type ?ifelse for information on the syntax of
ifelse.

2 The internet, e.g., google “R ifelse”.

3 Classmates.

4 Piazza.

5 Office hours, start-and-end of class, lab.

6 Email to instructor and/or GSI. For email help, please construct and
email a simple example demonstrating the issue.

?ifelse
ifelse


Subsetting matrices in R

• Matrices can be subsetted using logical vectors to pick out subsets of
rows and columns.

• Each row or column is included if the logical vector is TRUE and excluded
if FALSE.

• Rows and columns can also be selected using row and column names:

colnames(L)

## [1] "Year" "Female" "Male" "Total"

rownames(L)[1:8]

## [1] "1" "2" "3" "4" "5" "6" "7" "8"

Question 1.9. What is computed below. Can you find any interpretation?

L[g<0,"Year"]

## [1] NA 1934 1936 1943 1957 1960 1962 1963 1966 1968 1980

## [12] 1985 1988 1993 2015

TRUE
FALSE


Building a matrix in R

• The basic way to build a matrix is the matrix() function.

A <- matrix(1:6,nrow=2)

A

## [,1] [,2] [,3]

## [1,] 1 3 5

## [2,] 2 4 6

• We told R to construct a matrix with elements 1,2,3,4,5,6.

• matrix() fills the matrix by columns.

• R figured out A should have 3 columns since we gave matrix() 6
numbers and asked for 2 rows.

• If you don’t give R enough numbers, it recycles the ones you gave it.

matrix(c(1,2,3),nrow=2,ncol=3)

## [,1] [,2] [,3]

## [1,] 1 3 2

## [2,] 2 1 3

matrix()
1,2,3,4,5,6
matrix()
A
matrix()


Exercise on using matrix() and the recycling rule

Question 1.10. Guess the ouput of

matrix(c(0,1),nrow=3,ncol=2,byrow=TRUE)

• You can try variations on this exercise. Guess what you think R should
produce, see what it does produce, and train your intuition.

matrix()


Gluing together vectors and matrices

• We’ve used c() to combine numbers into vectors. It also combines
vectors into longer vectors.

u <- c(1,2) ; v <- c(3,4) ; c(u,v)

## [1] 1 2 3 4

• We can build a matrix by binding together vectors either as rows or
columns.

B <- rbind(u,v) ; C <- cbind(u,v)

B

## [,1] [,2]

## u 1 2

## v 3 4

C

## u v

## [1,] 1 3

## [2,] 2 4

Question 1.11. Guess what cbind(B,C) and rbind(B,C) produce.

c()
cbind(B,C)
rbind(B,C)


Unemployment data for our health economics case study

• The business cycle (Wikipedia:Business_cycle) consists of
alternating periods of higher and lower economic activity.

• Unemployment is counter-cyclical: it is higher when economic activity
is lower. We’ll use Bureau of Labor Statistics unemployment data.

download.file(destfile="unemployment.csv",

url="https://ionides.github.io/401f18/01/unemployment.csv")

# From http://data.bls.gov/timeseries/LNU04000000

# Percent unemployment, age 16+, not seasonally adjusted

Year,Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec

1948,4.0,4.7,4.5,4.0,3.4,3.9,3.9,3.6,3.4,2.9,3.3,3.6

1949,5.0,5.8,5.6,5.4,5.7,6.4,7.0,6.3,5.9,6.1,5.7,6.0

U <- read.table(file="unemployment.csv",sep=",",header=TRUE)

U[1:2,]

## Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

## 1 1948 4 4.7 4.5 4.0 3.4 3.9 3.9 3.6 3.4 2.9 3.3 3.6

## 2 1949 5 5.8 5.6 5.4 5.7 6.4 7.0 6.3 5.9 6.1 5.7 6.0

Wikipedia:Business_cycle


Averaging columns in R using apply()

• We want annual average unemployment. For each row, we must average
columns 2:13.

• The apply() function is useful for carrying out manipulations on rows
and columns of matrices.

u <- apply(U[,2:13],1,mean)

u[1:6]

## [1] 3.766667 5.908333 5.325000 3.333333 3.033333 2.925000

• apply() carries out an operation (here, taking the mean) on rows or
columns of matrices.

• The middle argument 1 to apply() asks for the function mean() to be
applied to each row.

• Setting 2 would give the average over rows for each column.

• Mnemonic: apply(U,1,...) gives a vector of length dim(U)[1], and
apply(U,2,...) gives a vector of length dim(U)[2].

apply()
2:13
apply()
apply()
1
apply()
mean()
2
apply(U,1,...)
dim(U)[1]
apply(U,2,...)
dim(U)[2]


Checking the mnemonic for apply(,1,) and apply(,2,)

dim(U)

## [1] 68 13

length(apply(U,1,mean))

## [1] 68

length(apply(U,2,mean))

## [1] 13

Question 1.12. (a) How many rows are in the monthly unemployment
matrix U? (b) How many columns does U have? (c) Which apply()

function call takes the average across all the columns in each row of U?

apply(,1,)
apply(,2,)
U
U
apply()
U


Plotting the data

plot(L$Year,y,type="line",

xlab="Year",

ylab="Life expectancy")

plot(U$Year,u,

xlab="Year",

ylab="Unemployment")

• A basic rule of applied statistics is to plot the data.

• Carefully designed plots can reveal secrets in the data: (i) label axes; (ii)
lines or points or both; (iii) any other creative ideas?

• In this code, U$Year is equivalent to U[,"Year"] or U[,1].

• In R, $ extracts a component of a list.

• The list class can collect together objects of any other class.

U$Year
U[,"Year"]
U[,1]
$


Lists in R

• Let’s learn lists by example

my_list <- list(apples=c("red","green"),oranges=c(6,12))

class(my_list)

## [1] "list"

class(my_list$apples)

## [1] "character"

class(my_list$oranges)

## [1] "numeric"

• We can index a component of a list using double brackets, [[.]]

my_list[[1]]

## [1] "red" "green"

• A dataframe is actually a list of vectors. This lets each column have a
different class, so we can store both qualitative and quantitative data.

• Each column in a dataframe must have the same length, so R lets us
index it like a matrix.

[[.]]


Detrending life expectancy

• Life expectancy has been generally increasing with time. We say it has
an increasing trend.

• We’ll investigate if it is above or below trend during economic booms.

• Subtracting an estimate of the trend from each data point is called
detrending. A basic way to do this is to fit a linear trend that fits the
data best, by finding the line mimizing the sum of squares of distances to
the data.

• In this course, we’re going to study linear models and their statistical
properties in considerable detail.

• Let’s first look at a least squares fitted line computed using the lm()

function in R.

lm()


Fitting a linear model using lm() using formula notation

• The lm() function has a formula notation using a tilde (~).

L_fit <- lm(Total~Year,data=L)

• The formula Total~Year is read as Total depends on Year.

• Writing data=L tells lm() to look for the linear model variables in the
column names of the dataframe L.

• lm(L$Total~L$Year) and lm(y=L$Total,x=L$Year) are equivalent.

plot(Total~Year,data=L,

type="l",

ylab="Total life expectancy")

lines(L$Year,L_fit$fitted.values,

lty="dotted")

• We can use formula notation in
plot() just like we did in lm().

lm()
lm()
~
Total~Year
data=L
lm()
L
lm(L$Total~L$Year)
lm(y=L$Total,x=L$Year)
plot()
lm()


Exploring the output of lm

• We call L_fit a fitted model object since it is an R object that was
created by fitting a model, in this case a linear model fitted using lm.

• Let’s check the class of this new R object

class(L_fit)

## [1] "lm"

• We see that lm is both the name of the function to fit a linear model
and the class of the resulting fitted model object.

• Now, let’s see what the fitted model object contains:

names(L_fit)

## [1] "coefficients" "residuals" "effects"

## [4] "rank" "fitted.values" "assign"

## [7] "qr" "df.residual" "xlevels"

## [10] "call" "terms" "model"

• L_fit is a list with all the things R thinks we might want to know
about the fitted linear model. Thus, in the plot above,
L_fit$fitted.values gives points on the fitted line.

lm
L_fit
lm
lm
L_fit
L_fit$fitted.values


Computer software notation vs math notation

• Computers compute things. That’s what they do. It seems obvious.

• A computer function takes numbers in and spits numbers out. It can’t
know whether the analysis is correct, or reasonable, or useful for some
purpose, or complete nonsense. Artificial intelligence is not (yet) good at
applied statistics!

• For describing statistical assumptions, understanding the behavior
of statistical tests, and defining statistical models, mathematics is
a more appropriate language than computer code.

• If all is well, the math helps us understand the computing and vice versa.

• We have seen one example: matrices and vectors are simultaneously
(i) mathematical objects, with certain mathematical rules and definitions;
(ii) R objects which follow a set of rules inspired by the mathematics.

• How do we mathematically write down the statistical linear model that
we fitted using lm()?

lm()


A linear model – the sample version

• Suppose our data are y1, y2, . . . , yn and on each unit i we have p
explanatory variables xi1, xi2, . . . , xip. A linear model is

(LM1) yi = b1xi1 + b2xi2 + · · ·+ bpxip + ei for i = 1, 2, . . . , n

• This is a model for a particular sample y1, . . . , yn. A basic task of
statistics is to generalize from a sample to a population. We’ll do that
later.

• The residual error terms e1, . . . , en in equation (LM1) include
everything about the data y1, y2, . . . , yn that cannot be explained by a
linear combination of the explanatory variables.

• Using summation notation we can write the linear model for this
sample in a more compact way,

(LM2) yi =

p∑
j=1

xijbj + ei for i = 1, 2, . . . , n

• We’ll review summation notation in due course.



Applying the linear model to detrend life expectancy

• When we did L_fit<-lm(Total~Year,data=L) earlier, we fitted the
linear model (LM1) with yi being the total life expectancy for the ith
year in the dataset and xi1 being the corresponding year.

• To fit a linear trend, we also want an intercept, which we can write by
setting xi2 = 1 for each year i.

• In this special case, with p = 2 variables and xi2 = 1, the model (LM1)
is called the simple linear regression model,

(SLR1) yi = b1xi1 + b2 + ei for i = 1, 2, . . . , n

• Here, b2 is the intercept for the fitted line yi = b1xi1 + b2 when we
ignore the residual errors e1, . . . , en.

• In L_fit<-lm(Total~Year,data=L), we gave R the task of finding the
values of the coefficients b1 and b2 which minimize the residual sum of
squares,

∑n
i=1 e

2
i .

• We didn’t have to tell R we wanted an intercept. By default, it assumed
we did. In this case it was right.

L_fit <- lm(Total~Year,data=L)
L_fit <- lm(Total~Year,data=L)


Is unemployment rate assosciated with mortality?

• Now, we’ll fit another linear model to see if the detrended life
expectancy can be explained by the level of economic activity, quantified
by the unemployment rate.

• We have seen that residuals is one of the components of an lm

object, by looking at names(L_fit).

• Residual is a more polite name than residual error. That is appropriate
here, since the “error” ei is exactly the deviation from trend that we are
interested in. Interpretation of ei depends on the particular situation.

• First, let’s set up the variables for the regression. Since we detrended life
expectancy, we should also detrend unemployment. Then, we use %in% to
find the years when these two datasets match and subset() to select
these years from L_detrended.

L_detrended <- L_fit$residuals

U_detrended <- lm(u~U$Year)$residuals

L_detrended <- subset(L_detrended,L$Year %in% U$Year)

residuals
lm
names(L_fit)
%in%
subset()
L_detrended


A linear model linking mortality and unemployment

lm1 <- lm(L_detrended~U_detrended)

coef(lm1)

## (Intercept) U_detrended

## 0.2899928 0.1313673

• We have obtained a positive coefficient for the sample linear model.
Higher unemployment seems to be associated with higher life expectancy.
This may be surprising. Is the result statistically significant? What
happens if we use a different explanatory variable instead of
unemployment? Or if we use more than one explanatory variable? Are
there any violations of statistical assumptions that might invalidate this
analysis? Is it reasonable to make a causal interpretation (that economic
cycles cause fluctuations in life expectancy) or must we limit ourselves to
a claim that these variables are associated?

• Giving informed answers to statistical questions such as these is a
primary goal of the course.


