Chapter 2. Matrices for applied statistics

- Math for matrices and vectors is called linear algebra.
- In statistics, the main purpose of linear algebra is to organize data and write down the manipulations we want to do to them.
- We can suppose that each data point takes a numeric value.
- Mathematically, we say the data point is a real number, and we write \mathcal{R} for the set of all real numbers, which is the entire number line.
- A vector of length n is a collection of n numeric values.
- We write \mathcal{R}^{n} for the set of vectors of length n.
- Example: the US life expectancy at birth for 2011 to 2015 is

$$
\mathbf{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)=(79.0,79.1,79.0,79.0,78.9) . \text { We say } \mathbf{y} \in \mathcal{R}^{5}
$$

- $y \in \mathcal{R}^{5}$ corresponds to class $(y)=$ "numeric", length $(y)=5$ in R.
- Qualitative data can be written as a vector in \mathcal{R}^{n} by assigning a number for each qualitative level.
- We use bold font for vectors, and italic font for elements of the vector.

More perspectives on vectors

Question 2.1. You may or may not have seen vectors in other contexts. In physics, a vector is a quantity with magnitude and direction. How does that fit, in with our definition?
Physics works usually with $2 \& 3$ dimensichs.
Statistics \& math work with Cartesian coorolisates; "magnitude es direction" is the polar coocolinate representation.
Question 2.2. How can I write a boldface x in handwriting? underscore $\underset{\sim}{x}$ is usual handwriting for boldface. (physics uses $\stackrel{\rightharpoonup}{x}$ for vectors, but statisticians doit)

Adding vectors and multiplying by a scalar

- For a dataset, the index i of the element y_{i} of the vector (y) might correspond to a measurement on the i th member of a population, the outcome of the i th group in an experiment, or the i th observation out of a sequence of observations on a system. Recall i is called an observational unit, or just unit.
- We might want to add two quantities u_{i} and v_{i} for unit i.
- Using vector notation, if $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right), \mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ we define the vector sum $\mathbf{y}=\mathbf{u}+\mathbf{v}$ to be the elementwise sum $y_{i}=u_{i}+v_{i}$, adding up the corresponding elements for each unit.
- We might also want to rescale each element by the same factor. To change a measurement y_{i} in inches to a new measurement z_{i} in mm , we rescale with the scalar $\alpha=25.4$. We want $z_{i}=\alpha y_{i}$ for each i. This is written in vector notation as multplication of a vector by a scalar, $\mathbf{z}=\alpha \mathbf{y}$.

An example of vector addition and scalar multiplication
An ecologist measures the pH of ten Michigan lakes at two points in the summer. Set up vector notation to describe her data algebraically. Write a vector calculation giving the average pH in each lake.

- Let x_{i} be the first pH measvenent in lake e i, for $i=1, \ldots, 10$.
- Write $x=\left(x_{1}, \ldots, x_{10}\right)$
- Let $y=\left(y_{1, \ldots}, y_{10}\right)$ be the vector of second measurements.
- Let $\mu=\left(\mu_{1}, \ldots, \mu_{10}\right)$ be the vector of mean measurements in each lake 1,..,10.
- For each lake, $\mu_{i}=\frac{1}{2}\left(x_{i}+y_{i}\right), i=1, \ldots, 10$
- In vector form, $\mu=\frac{1}{2}(x+y)$

Vectors and scalars in R

- We have seen in Chapter 1 that R has vectors. An R vector of length 1 is a scalar, and we have seen that R follows the usual mathematical rules of vector addition and multiplication by a scalar.
- R also allows adding a scalar to a vector

$$
\begin{array}{ll}
x<-c(1,2,3) & x+2 \\
& \# \#[1] 345
\end{array}
$$

- Mathematically, adding scalars to vectors is not allowed. Instead, we define the vector of ones, $\mathbf{1}=(1,1, \ldots, 1)$, and write $\mathbf{x}+2 \times \mathbf{1}$.
Question 2.3. Why does R choose to break the usual rules of mathematics here? Simplicity \& convenionce; guessing what you wont: ansistert with elenentwise calculation; consistent with the recycling rule.

Matrices

- Matrices let us store and manipulate p quantitites for each of n units.
- An $n \times p$ matrix \mathbb{A} is a numerical array with n rows and p columns,

$$
\mathbb{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 p} \\
a_{21} & a_{22} & \ldots & a_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n p}
\end{array}\right]
$$

- Blackboard bold capital letters, $\mathbb{A}, \mathbb{B}, \mathbb{X}, \mathbb{Z}$, etc, denote matrices.
- We are reserving plain capital letters for random variables.
- We say $\mathbb{A}=\left[a_{i j}\right]_{n \times p}$ as an abbreviation for writing the full $n \times p$ matrix.
- We write $\underset{n \times p}{\mathbb{A}}$ when we want to emphasize the dimension.
- Keeping track of matrix dimensions can be helpful!

Matrix addition

- matrices are added elementwise.
- We can only add matrices with the same dimensions.
- Let $\mathbb{A}=\left[a_{i j}\right]_{n \times p}$ and $\mathbb{B}=\left[b_{i j}\right]_{n \times p}$.
- Since both \mathbb{A} and \mathbb{B} are $n \times p$ we can add them

$$
\begin{array}{r}
{\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 p} \\
a_{21} & a_{22} & \ldots & a_{2 p} \\
\vdots & & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n p}
\end{array}\right]+\left[\begin{array}{cccc}
b_{11} & b_{12} & \ldots & b_{1 p} \\
b_{21} & b_{22} & \ldots & b_{2 p} \\
\vdots & & & \vdots \\
b_{n 1} & b_{n 2} & \ldots & b_{n p}
\end{array}\right]} \\
=\left[\begin{array}{cccc}
a_{11}+b_{11} & a_{12}+b_{12} & \ldots & a_{1 p}+b_{1 p} \\
a_{21}+b_{22} & a_{22}+b_{22} & \ldots & a_{2 p}+b_{2 p} \\
\vdots & 21 & & \\
a_{n 1}+b_{n 1} & a_{n 2}+b_{n 2} & \ldots & a_{n p}+b_{n p}
\end{array}\right]
\end{array}
$$

- Focus on one element (say, the top left element in red) and then check that the pattern repeats.

Matrix addition in R

- R agrees with our mathematical definition of matrix addition.
- If A and B are two R matrices of matching dimension, then

$$
C<-A+B
$$

gives a matrix with the elementwise sums.

- If the dimensions of A and B don't match, R gives an error message.
- Curiously, R does allow adding a vector to a matrix using the recycling rule. This is not allowed in math.

```
A <- matrix(1:6,2,3)
```

A

\#\#	[, 1]	$[, 2]$	$[, 3]$
\#\# [1,]	1	3	5
\#\# [2,]	2	4	6
A+c(0,10)			
\#\#	$[, 1]$	$[, 2]$	$[, 3]$
\#\# [1,]	1	3	5
\#\# [2,]	12	14	16

Matrix multiplication

- The rule for matrix multiplication seems strange at first. We'll see why it is useful.
- The (i, j) entry of the product $\mathbb{A} \mathbb{B}$ comes from multiplying each element in row i of \mathbb{A} with the corresponding element in column j of \mathbb{B} and adding up these terms.
- For this rule to work, the number of columns of \mathbb{A} must match the number of rows of \mathbb{B}.
- We start with the 2×2 case, where $\mathbb{A}=\left[a_{i j}\right]_{2 \times 2}$ and $\mathbb{B}=\left[b_{i j}\right]_{2 \times 2}$.
rowl $\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\left[\begin{array}{l}b_{11} \\ b_{21}\end{array} \begin{array}{l}b_{12} \\ b_{22}\end{array}\right]=\left[\begin{array}{ll}a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\ a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}\end{array}\right]$
- In red: notice how the $(1,2)$ entry of $\mathbb{A} \mathbb{B}$ comes from sliding row 1 of \mathbb{A} down column 2 of \mathbb{B} and adding products of corresponding pairs.

Practice multiplying 2×2 matrices

Question 2.4. Evaluate the matrix product

$$
\begin{aligned}
& {\left[\begin{array}{cc}
2 & -1 \\
1 & 3
\end{array}\right]\left[\begin{array}{cc}
1 & 4 \\
-2 & 0
\end{array}\right] } \\
= & {\left[\begin{array}{cc}
4 & 8 \\
-5 & 4
\end{array}\right] }
\end{aligned}
$$

The dimension of a matrix product

- We can multiply $\underset{n \times p}{\mathbb{A}} \underset{p \times q}{\mathbb{B}}$ and the result is an $n \times q$ matrix.

Question 2.5. What do you think is the dimension of the triple product

- The rule is: when multiplying matrices, the middle dimensions have to pair up, and the resulting matrix has the outside dimensions.
- Notice that $\underset{p \times q}{\mathbb{B}} \underset{n \times p}{\mathbb{A}}$ does not exist.
- In general, $\mathbb{A} \mathbb{B} \neq \mathbb{B} \mathbb{A}$. Matrix multiplication is not commutative.

Matrix multiplication in R

- R interprets the usual multiplication operator $*$ as elementwise multiplication.
- Matrix multiplication is done with $\% * \%$.
- Let's check this by an example.

U \% $\%$ \% V

Matrix multiplication and linear equations

- A linear system of n equations with p unknown variables, x_{1}, \ldots, x_{p} is

$$
\begin{gather*}
\frac{a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 p} x_{p}}{a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 p} x_{p}}=b_{1} \tag{L1}\\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n p} x_{p}=b_{n}
\end{gather*}
$$

- The rule for matrix multiplication lets us write this $\operatorname{as} \mathbb{A} \mathbb{x}=\mathbf{b}$.
- In red: the first entry in the matrix product $\mathbb{A} \mathbf{x}$ comes from sliding the first row of \mathbb{A} down the column of values in \mathbf{x}, multiplying each pair of numbers, and adding up these products. This matches the left hand side of the first line of (L1).

Multiplication and addition of a matrix and a scalar

- Scalar times matrix multiplication is computed elementwise:

$$
s \mathbb{A}=s\left[\begin{array}{ccc}
\sqrt{a_{11}} & \ldots & a_{1 q} \\
\vdots & \ddots & \vdots \\
a_{p 1} & \ldots & a_{p q}
\end{array}\right]=\left[\begin{array}{ccc}
s a_{11} & \ldots & s a_{1 q} \\
\vdots & \ddots & \vdots \\
s a_{p 1} & \ldots & s a_{p q}
\end{array}\right]
$$

- R allows addition of a matrix and a scalar, with the scalar being added to each element of the matrix.
- To write this in math, we need to define the unit matrix

$$
\underset{n \times p}{\mathbb{1}}=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & 1 & \ldots & 1 \\
\vdots & & & \vdots \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

- $\mathbb{A}+s \mathbb{1}$ matches addition of a scalar and matrix in R .

Inverting a 2×2 matrix

- Let $\mathbb{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a general 2×2 matrix the scalar can be
- Let $\mathbb{A}^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]=\left[\begin{array}{cc}\frac{d}{a d-b c} & \frac{a}{a d i b b c} c \\ \frac{-c}{a d-b c} & \frac{a}{a d-b c}\end{array}\right]$ it er.

Question 2.6. Compute the matrix product $\mathbb{A}_{\mathbb{A}^{-1}}$
$\frac{1}{a d-b c}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]=\frac{1}{a d-b c}\left[\begin{array}{cc}a d-b c & \sim a b+a b \\ c d-c d & -b c+a d\end{array}\right]$
only defined $=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \begin{gathered}=0 \\ \text { (identity mane ers) } \\ \text { Matrix. }\end{gathered}$
when $\operatorname{ad}-b c \neq 0$

- \mathbb{A}^{-1} is called the inverse of \mathbb{A}.
- $a d-b c$ is called the determinant of \mathbb{A}. The inverse only exists if $a d-b c \neq 0$.

The identity matrix

- $\underset{2 \times 2}{\mathbb{I}}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is the 2×2 identity matrix.

> usually $A \mid B \neq B A$ but $A A^{-1}=A^{-1} A$

- We can check that

$$
\mathbb{A}^{-1}=\mathbb{A}^{-1} \mathbb{A}=\mathbb{I}
$$

- Also, for any 2×2 matrix \mathbb{B},

$$
\mathbb{I} \mathbb{B}=\mathbb{B} \mathbb{I}=\mathbb{B}
$$

- We see that \mathbb{I} plays the role of 1 in the usual arithmetic.
- For numbers we are familiar with the corresponding results
$a^{-1} \times a=a \times a^{-1}=1$ and $1 \times a=a \times 1=a$.

Finding the matrix inverse and determinant in R

- The R function $\operatorname{det}()$ finds the determinant of a square matrix, and solve() finds the inverse if it exists. generates random numbers

| \#\# | | $[, 1]$ | $[, 2]$ |
| :--- | :--- | :--- | :--- |$[, 3]$

\#\#	$[, 1]$	$[, 2]$	$[, 3]$
\#\# [1,]	-2.18	1.30	1.91
\#\# [2,]	0.68	-1.75	0.82
\#\# [3,]	1.02	1.32	-1.33

A \% \% \% A_inv
$\operatorname{det}(A)$; det(A_inv)

\#\#	$[, 1]$	$[, 2]$	$[, 3]$	\#\# [1] 0.2139161
\#\# [1,]	$1.000000 \mathrm{e}+00$	0	0	\#\# [1] 4.674729
\#\# [2,] $-1.110223 \mathrm{e}-16$	1	0	note: $\operatorname{det}(A) * \operatorname{det}\left(A_{\text {inv }}\right)$	
\#\# [3,] $0.000000 \mathrm{e}+00$	0	1		$=1$

- Due to numerical error, $\mathrm{A} \% * \% \mathrm{~A}_{\text {_ }}$ inv is not exactly equal to \mathbb{I}.

Using matrices to solve a system of linear equations

- We've seen how matrices can represent a system of linear equations as $A \mathrm{x}=\mathrm{b}$.
- For a basic linear algebra equation $a x=b$ we would divide through by a, or equivalently multiply through by a^{-1}, to find $x=a^{-1} b$ when $a \neq 0$.
- We can use the matrix inverse \mathbb{A}^{-1} in the same way. Multiplying both sides of $\mathbb{A} \mathbf{x}=\mathbf{b}$ by \mathbb{A}^{-1}, we get

$$
\mathbb{A}^{-1} \mathbb{A} \mathbf{x}=\mathbb{A}^{-1} \mathbf{b}
$$

- Since $\mathbb{A}^{-1} \mathbb{A}=\mathbf{I}$ and $\mathbb{I} \mathbf{x}=\mathbf{x}$, we get

$$
\mathbf{x}=\mathbb{A}^{-1} \mathbf{b}
$$

Using R to solve a set of linear equations

Worked example. Suppose we want to solve

$$
\begin{aligned}
w+2 x-3 y+4 z & =0 \\
2 w-2 x+y+z & =1 \\
-w-x+4 y-z & =2 \\
3 w-x-8 y+2 z & =3
\end{aligned}
$$

How do we do this using R?

1. Write the system as a matrix equation $\mathbb{A} \mathbf{x}=\mathbf{b}$,

$$
\left[\begin{array}{cccc}
1 & 2 & -3 & 4 \\
2 & -2 & 1 & 1 \\
-1 & -1 & 4 & -1 \\
3 & -1 & -8 & 2
\end{array}\right]\left[\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right]
$$

Using R to solve a set of linear equations, continued...
2. Enter the matrix \mathbb{A} and vector b into R.
A <- rind $c(1,2,-3,4)$, here, b is a vector in R.
$c(2,-2,1,1)$, th is treated life a
c $(-1,-1,4,-1)$,
c($3,-1,-8,2)$)
b <- c $(0,1,2,3)$

$$
4 \times 1 / \operatorname{maxix}
$$

"column vector"
15. Matrix (b) is FALSE
$\%_{0}$. $\%$ defines a

Question 2.7. Which of these correctly computes x and why?

The transpose of a matrix

- Sometimes we want to switch the rows and columns of a matrix.
- For example, we usually suppose that each column of a data matrix is a measurement variable (say, height and weight) and each row of a data matrix is an object being measured (say, a row for each person).
However, what if the data were stored in a matrix where columns corresponded to objects?
- Switching rows and columns is called transposing the matrix.
- The transpose of \mathbb{A} is denoted mathematically by \mathbb{A}^{T} and in R by $t(A)$.
- If \mathbb{A} has dimension $n \times p$, then \mathbb{A}^{T} is $p \times n$.

Some properties of matrices
You shovid understand these. You won't be given lots of matrix algebra to do!

- The following properties of matrices match similar properties of numbers. They may therefore seem intuitive.
? What is.

$$
\begin{equation*}
(\mathbb{A} \mathbb{B}) \mathbb{C}=\mathbb{A}(\mathbb{B} \mathbb{C}) \tag{?}
\end{equation*}
$$

$$
\begin{aligned}
(\mathbb{A} \mathbb{B}) \mathbb{C} & =\mathbb{A}(\mathbb{B} \mathbb{C}) \\
A^{\wedge}-1 \text { in } R ?(\mathbb{A}+\mathbb{B})+\mathbb{C} & =\mathbb{A}+(\mathbb{B}+\mathbb{C})
\end{aligned}
$$

\uparrow this
This is the $\quad \mathbb{A}(\mathbb{B}+\mathbb{C})=\mathbb{A} \mathbb{B}+\mathbb{A} \mathbb{C}$
elencatwise inverse $\mathbb{A}^{-1}=\mathbb{A}^{-1} \mathbb{A}=\mathbb{I}$
not the matrix inverse $\left(\mathbb{A}^{-1}\right)^{-1}=\mathbb{A}$
would need
$\mathbb{C} \mathbb{B}=\mathbb{B} \mathbb{C}$

- The following are properties of transposes.
? Is $\mathbb{B C}=\mathbb{C} B$ for
$\left(\mathbb{A}^{T}\right)^{\mathrm{T}}=\mathbb{A}$
square matrices
$(\mathbb{A}+\mathbb{B})^{\mathrm{T}}=\mathbb{A}^{\mathrm{T}}+\mathbb{B}^{\mathrm{T}}$
which usually is not true.

Not in geneal even
$\left(\mathbb{A}^{T}\right)^{-1}=\left(\mathbb{A}^{-1}\right)^{\mathrm{T}} \mathcal{A}$
e.g. check
though the dimensims
matrices since we have a match. formula for \mathbb{A}^{-1}.

Properties about the order of multiplication

- The main difference between matrix algebra and the usual numeric algebra is that matrix multiplication does not commute $(\mathbb{A} \mathbb{B} \neq \mathbb{B} \mathbb{A})$.
- The inverse of a product is the product of the inverses, but with the order reversed.

$$
\begin{aligned}
(\mathbb{A} \mathbb{B})^{-1} & =\mathbb{B}^{-1} \mathbb{A}^{-1} \mathscr{千} \\
(\mathbb{A} \mathbb{B} \mathbb{C})^{-1} & =\mathbb{C}^{-1} \mathbb{B}^{-1} \mathbb{A}^{-1}
\end{aligned}
$$

- The same rule holds for transpose

$$
=\mathbb{B}^{-1} \mathbb{H} \mathbb{B}
$$

$$
\begin{aligned}
(\mathbb{A} \mathbb{B})^{\mathrm{T}} & =\mathbb{B}^{\mathrm{T}} \mathbb{A}^{\mathrm{T}} \\
(\mathbb{A} \mathbb{B} \mathbb{C})^{\mathrm{T}} & =\mathbb{C}^{\mathrm{T}} \mathbb{B}^{\mathrm{T}} \mathbb{A}^{\mathrm{T}}
\end{aligned}
$$

$$
=\mathbb{B}^{-1} \mathbb{B}=\mathbb{I}
$$

Question 2.8. Suppose that \mathbb{A} has dimension $n \times p$ and \mathbb{B} is $p \times q$. Check that this formula for $(\mathbb{A} \mathbb{B})^{\mathrm{T}}$ has the right dimension.

$$
(A \mathbb{B})^{\top}=\mathbb{B}^{\top} A^{\top} \quad \not A^{\top}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
$$

