
Chapter 3. Fitting a linear model to data by least squares

• Recall the sample version of the linear model. Data are y1, y2, . . . , yn
and on each unit i we have p explanatory variables xi1, xi2, . . . , xip.

(LM1) yi = b1xi1 + b2xi2 + · · ·+ bpxip + ei for i = 1, 2, . . . , n

This is the index form of the sample version of the linear model.

• Using summation notation, we can equivalently write

(LM2) yi =

p∑
j=1

xijbj + ei for i = 1, 2, . . . , n

This is the summation variant of the index form of the linear model.

• We can also use matrix notation. Define column vectors
y = (y1, y2, . . . , yn), e = (e1, e2, . . . , en) and b = (b1, b2, . . . , bp). Define
the matrix of explanatory variables, X = [xij ]n×p. In matrix notation,
writing (LM1) or (LM2) is exactly the same as

(LM3) y = Xb+ e

This is the matrix form of the sample version of the linear model.
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Naming the X matrix in the linear model y = Xb+ e

• “The X matrix” is not a great name since we would have the same
model if we had called it Z.

• Many names are used for X for the many different purposes of linear
models.

• Sometimes X is called the matrix of predictor variables or matrix of
explanatory variables.

• We call X the design matrix in situations where xij is the setting of
adjustable variable j for the ith run of an experiment. For example, yi
could be the stregth of an alloy made up of a fraction xij of metal j for
j = 1, . . . , p− 1.

• X can also be called the matrix of covariates.

• Sometimes, y is called the dependent variable and X is the matrix of
independent variables. Scientifically, an independent variable is one that
can be set by the scientist. However, independence has a different
technical meaning in statistics.
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The expanded matrix form of the linear model

• We can write X = [x1 x2 . . . xp], where xi = (x1i, x2i, . . . , xni) is the
column vector of values of the ith predictor for each of the n units.

• The matrix form of the linear model, y = Xb+ e, can then be
expanded to

y1
y2
...
yn

 =


x11
x21

...
xn1

 b1 +


x12
x22

...
xn2

 b2 + · · ·+


x1p
x2p

...
xnp

 bp +


e1
e2
...
en


• Often, the matrix of predictors includes a column of ones, commonly
called the intercept. For example, when xp = (1, 1, . . . , 1) we get

y1
y2
...
yn

 =


x11
x21

...
xn1

 b1 + · · ·+


x1 p−1

x2 p−1
...

xnp−1

 bp−1 +


1
1
...
1

 bp +


e1
e2
...
en
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Question 3.1. Suppose X is n× 2 and the second column is an intercept,
x2 = (1, 1, . . . , 1). This is called “one predictor plus an intercept”.
(a) Write out this linear model in expanded matrix form.

(b) Write out the model in subscript form. Hence, explain why x2 is called
the intercept.

(c) Would it be more proper to call b2 the intercept?
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Choosing the coefficient vector, b, by least squares

• We seek the least squares choice of b that minimizes the residual sum
of squares, RSS =

∑n
i=1 e

2
i .

• Xb is the vector of fitted values.

• The residual for unit i is ei = yi − [Xb]i. This is small when the fitted
value is close to the data.

• Intuitively, the fit with smallest RSS has fitted values closest to the
data, so should be preferred.

• One could use some other criterion, e.g., minimizing the sum of absolute
residuals,

∑n
i=1 |ei|.

• We will find out that RSS is convenient for its mathematical and
statistical properties.
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The least squares formula

• The least squares choice of b turns out to be

(LM4) b =
(
XtX

)−1Xt
y

• We will check that this is the formula R uses to fit a linear model.

• We will also gain understanding of (LM4) by studying the simple linear
regression model yi = b1xi + b2 + ei for which p = 2.

• In the simple linear regression model, b1 and b2 are called the slope and
the intercept.

• Often, b1, . . . , bp are called the coefficients of the linear model, and b is
the coefficient vector.

• Sometimes, b1, . . . , bp are called parameters of the linear model, and b
is the parameter vector.

• In R, we obtain b using the coef() function as demonstrated below.

coef()
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Checking the coefficient estimates from R

• Consider the example from Chapter 1, where L_detrended is life
expectancy for each year, after subtracting a linear trend, and
U_detrended is the corresponding detrended unemployment.

lm1 <- lm(L_detrended~U_detrended)

coef(lm1)

## (Intercept) U_detrended

## 0.2899928 0.1313673

• Now, we can construct the X matrix corresponding to this linear model
and ask R to compute the coefficients using the formula (LM4).

X <- cbind(U_detrended,intercept=rep(1,length(U_detrended)))

solve( t(X) %*% X ) %*% t(X) %*% L_detrended

## [,1]

## U_detrended 0.1313673

## intercept 0.2899928

L_detrended
U_detrended
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Checking the X matrix we constructed

• The matrix calculation on the previous slide matches the coefficients
produced by lm().

• We’re fairly sure we got the computation right, because we exactly
matched lm(), but it is a good idea to look at the X matrix we
constructed.

head(X)

## U_detrended intercept

## 1 -1.0075234 1

## 2 1.1027941 1

## 3 0.4881116 1

## 4 -1.5349043 1

## 5 -1.8662535 1

## 6 -2.0059360 1

length(U_detrended)

## [1] 68

dim(X)

## [1] 68 2

lm()
lm()


Fitted values

• The fitted values are the estimates of the data based on the
explanatory variables. For our linear model, these fitted values are

ŷi = b1xi1 + b2xi2 + · · ·+ bpxip, for i = 1, 2, . . . , n.

• The vector of least squares fitted values ŷ = (ŷ1, . . . , ŷn) is given by

(LM5) ŷ = Xb = X
(
XtX

)−1Xt
y.

• It is worth checking we now understand how R produces the fitted values
for predicting detrended life expectancy using unemployment:

my_fitted_values<-X %*% solve(t(X)%*%X) %*% t(X) %*% L_detrended

lm1$fitted.values[1:2]

## [1] 0.1576371 0.4348639

my_fitted_values[1:2]

## [1] 0.1576371 0.4348639

• We see that the matrix calculation (LM5) exactly matches the fitted
values of the lm1 model that we built earlier using lm().

lm1
lm()
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Plotting the data

• We have already seen plots of the life expectancy and unemployment
data before. When you fit a linear model you should look at the data and
the fitted values. We plot the fitted values two different ways.

plot(L_detrended~U_detrended)

lines(U_detrended,my_fitted_values,lty="solid",col="blue")

abline(coef(lm1),lty="dotted",col="red",lwd=2)

Question 3.2. Learn about
the abline() and lines()

functions. Explain to yourself
why the solid blue line and
the dotted red line coincide.

abline()
lines()
Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward

Edward



Review of summation signs

• To do statistics, we often want to sum things up over all data points so
the summation sign

∑n
i=1 comes up frequently.

• The basic trick to understand
∑n

i=1 is that anything written using a
summation sign can be written as a usual sum.

• As long as you can expand from
∑n

i=1 zi to z1 + z2 + · · ·+ zn, and then
contract back again from z1 + z2 + · · ·+ zn to

∑n
i=1 zi, then you can use

what you already know about + to work with
∑n

i=1.

Question 3.3. Can we take a constant outside a sum sign? Is it true that

n∑
i=1

cyi = c

n∑
i=1

yi.
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Example: summation of a constant

Question 3.4. What happens if we sum a constant? Explain why

n∑
i=1

c = nc.
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Deriving the formula for the least squares coefficient vector

• We derive (LM4) for the simple linear regression model (SLR1).

• For simple linear regression, the residual sum of squares (RSS) is

RSS =

n∑
i=1

(
yi −mxi − c

)2
• To minimize RSS, we differentiate. Differentiation will not be tested in
quizzes and exams. We present it here to understand where the formula
(LM4) for b comes from.

• Calculus fact: To find m and c minimizing RSS, we can differentiate
with respect to m and c and set the derivatives equal to zero.

• Calculus fact: Differentiating RSS with respect to m treating c as a
constant is called a partial derivative, written as ∂RSS/∂m.

• Calculus fact: If we can find m and c with ∂RSS/∂m = 0 and
∂RSS/∂c = 0 we have found a minimum or maximum of RSS.

• RSS is non-negative and can get arbitrarily large for bad choices of m
and c. It has a minimum but not a maximum.
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Differentiating RSS with respect to m

• Recall that RSS =
∑n

i=1

(
yi −mxi − c

)2
.

Worked example 3.1. Apply the chain rule to differentiate the ith term
in the sum for RSS. Check that

∂

∂m

(
yi −mxi − c

)2
= (−xi) · 2

(
yi −mxi − c

)

Worked example 3.2. Since the derivative of a sum is the sum of the
derivatives, check that

∂

∂m
RSS = 2m

n∑
i=1

x2i − 2

n∑
i=1

xiyi + 2c

n∑
i=1

xi.
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Differentiating RSS with respect to c

A similar calculation, which you can check if you want the exercise, gives

∂

∂c
RSS = 2nc− 2

n∑
i=1

yi + 2m

n∑
i=1

xi.



The normal equations

• Now we set the derivatives to zero. This minimizes the residual sum of
squares (RSS) giving the least squares values of m and c

• This gives a pair of simultaneous linear equations for m and c:

(LS1)

{
m
∑n

i=1 x
2
i + c

∑n
i=1 xi =

∑n
i=1 xiyi

m
∑n

i=1 xi + cn =
∑n

i=1 yi

• These are called the normal equations.

• We will show they can be written in matrix form as

(LS2) XtXb = Xty

• Therefore, the solution to the normal equations is

b =
[
XtX

]−1Xt
y

• This shows (LM4) solves (LS1) and so minimizes the RSS.
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Simple linear regression in matrix form

• Recall the subscript form for the simple linear regression model,

yi = mxi + c+ ei, for i = 1, . . . , n

• The matrix form for this model is

y = Xb+ e

where y = (y1, . . . , yn), b = (m, c), e = (e1, . . . , en), and X = [x 1 ] for
column vectors x = (x1, . . . , xn) and 1 = (1, 1, . . . , 1).

• Written out in full, this matrix form is
y1
y2
...
yn

 =


x1 1
x2 1
...

...
xn 1


[
m
c

]
+


e1
e2
...
en
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Evaluating XtX and Xty for simple linear regression

Question 3.5. For this X, check that XtX =

[ ∑n
i=1 x

2
i

∑n
i=1 xi∑n

i=1 xi n

]

Question 3.6. Also, check that Xty =

[ ∑n
i=1 xiyi∑n
i=1 yi

]
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The normal equations in matrix form

Question 3.7. Check that (LS1) in matrix form is[ ∑n
i=1 x

2
i

∑n
i=1 xi∑n

i=1 xi n

] [
m
c

]
=

[ ∑n
i=1 xiyi∑n
i=1 yi

]

• Now we have found that (LS2) and (LS1) are the same equations.

Therefore they must have the same solution, which is b =
(
XtX

)−1Xty.

• We have shown that b =
(
XtX

)−1Xty is the least squares coefficient
vector for simple linear regression.
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