Chapter 3. Fitting a linear model to data by least squares

- Recall the sample version of the linear model. Data are $y_{1}, y_{2}, \ldots, y_{n}$ and on each unit i we have p explanatory variables $x_{i 1}, x_{i 2}, \ldots, x_{i p}$.
(LM) $\quad y_{i}=b_{1} x_{i 1}+b_{2} x_{i 2}+\cdots+b_{p} x_{i p}+e_{i} \quad$ for $i=1,2, \ldots, n$ subscript
This is the -index form of the sample version of the linear model.
- Using summation notation, we can equivalently write

$$
\begin{equation*}
y_{i}=\sum_{j=1}^{p} x_{i j} b_{j}+e_{i} \quad \text { for } i=1,2, \ldots, n \tag{LM}
\end{equation*}
$$

This is the summation variant of the index form of the linear model.

- We can also use matrix notation. Define column vectors
$\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right), \mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{p}\right)$. Define the matrix of explanatory variables, $\mathbb{X}=\left[x_{i j}\right]_{n \times p}$. In matrix notation, writing (LM1) or (LM2) is exactly the same as Chede LM3 does match LMI Egg. from
(LM) $\quad \mathbf{y}=\mathbb{X} \mathbf{b}+\mathbf{e}$ the matrix multipluation in
This is the matrix form of the sample version of the linear model.

Naming the \mathbb{X} matrix in the linear modei $\mathbf{y}=\mathbb{X} \mathbf{b}+\mathbf{e}$

- "The \mathbb{X} matrix" is not a great name since we would have the same model if we had called it \mathbb{Z}.
- Many names are used for \mathbb{X} for the many different purposes of linear models.
- Sometimes \mathbb{X} is called the matrix of predictor variables or matrix of explanatory variables.
- We call \mathbb{X} the design matrix in situations where $x_{i j}$ is the setting of adjustable variable j for the i th run of an experiment. For example, y_{i} could be the stregth of an alloy made up of a fraction $x_{i j}$ of metal j for $j=1, \ldots, p-1$.
- \mathbb{X} can also be called the matrix of covariates.
- Sometimes, y is called the dependent variable and \mathbb{X} is the matrix of independent variables. Scientifically, an independent variable is one that can be set by the scientist. However, independence has a different technical meaning in statistics.

The expanded matrix form of the linear model

- We can write $\mathbb{X}=\left[\mathbf{x}_{1} \mathbf{x}_{2} \ldots \mathbf{x}_{p}\right]$, where $\mathbf{x}_{i}=\left(x_{1 i}, x_{2 i}, \ldots, x_{n i}\right)$ is the column vector of values of the i th predictor for each of the n units.
- The matrix form of the linear model, $\mathbf{y}=\mathbb{X} \mathbf{b}+\mathbf{e}$, can then be expanded to

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{11} \\
x_{21} \\
\vdots \\
x_{n 1}
\end{array}\right] b_{1}+\left[\begin{array}{c}
x_{12} \\
x_{22} \\
\vdots \\
x_{n 2}
\end{array}\right] b_{2}+\cdots+\left[\begin{array}{c}
x_{1 p} \\
x_{2 p} \\
\vdots \\
x_{n p}
\end{array}\right] b_{p}+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right]
$$

- Often, the matrix of predictors includes a column of ones, commonly called the intercept. For example, when $\mathbf{x}_{p}=(1,1, \ldots, 1)$ we get

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{11} \\
x_{21} \\
\vdots \\
x_{n 1}
\end{array}\right] b_{1}+\cdots+\left[\begin{array}{c}
x_{1 p-1} \\
x_{2 p-1} \\
\vdots \\
x_{n p-1}
\end{array}\right] b_{p-1}+\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right] b_{p}+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right]
$$

Question 3.1. Suppose \mathbb{X} is $n \times 2$ and the second column is an intercept, $\mathbf{x}_{2}=(1,1, \ldots, 1)$. This is called "one predictor plus an intercept".
(a) Write out this linear model in expanded matrix form.

$$
\left[\begin{array}{c}
y_{1} \tag{*}\\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{11} \\
x_{21} \\
\vdots \\
x_{n 1}
\end{array}\right] b_{1}+\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right] b_{2}+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right]
$$

(b) Write out the model in subscript form. Hence, explain why \mathbf{x}_{2} is called the intercept. Look at the top tow of $(x): y_{1}=x_{11} b_{1}+b_{2}+e_{1}$ Generalizing to the $i^{\text {th }}$ cow:

$$
y_{i}=x_{i}, b_{1}+b_{2}+e_{i}
$$

If you graph, $y_{i}=x_{i} b_{1}+b_{2}+e_{2}$, the line of
(c) Would it be more proper to call b_{2} the intercept? the line hits the People often use the same name for the y axis. predictor \& the coefficient. R does this too. Column names of the design matrix are used to name coefficients.

Choosing the coefficient vector, b, by least squares
subscript form:

$$
y_{i}=\sum_{j} x_{i j} b_{j}+e_{i}
$$

$$
\Rightarrow e_{i}=y_{i}-\sum_{j} x_{i} b_{j} t s \text { fitted value }
$$

- We seek the least squares choice of \mathbf{b} that minimizes the residual sum of squares, $\mathrm{RSS}=\sum_{i=1}^{n} e_{i}^{2}$.
- $\mathbb{X} \mathbf{b}$ is the vector of fitted values. \qquad $\sum_{i} x_{i j} b_{j}$
- The residual for unit i is $e_{i}=y_{i}-[\mathbb{X} \mathbf{b}]_{i}$. This is small when the fitted value is close to the data. \qquad
- Intuitively, the fit with smallest RSS has fitted values closest to the data, so should be preferred.
- One could use some other criterion, e.g., minimizing the sum of absolute residuals, $\sum_{i=1}^{n}\left|e_{i}\right|$.
- We will find out that RSS is convenient for its mathematical and statistical properties.

The least squares formula

- The least squares choice of \mathbf{b} turns out to be

$$
\begin{equation*}
\mathbf{b}=\left(\mathbb{X}^{\mathrm{T}} \mathbb{X}\right)^{-1} \mathbb{X}^{\mathrm{T}} \mathbf{y} \tag{LM4}
\end{equation*}
$$

- We will check that this is the formula R uses to fit a linear model.
- We will also gain understanding of (LM4) by studying the simple linear regression model $y_{i}=b_{1} x_{i}+b_{2}+e_{i}$ for which $p=2$.
- In the simple linear regression model, b_{1} and b_{2} are called the slope and the intercept.
- Often, b_{1}, \ldots, b_{p} are called the coefficients of the linear model, and \mathbf{b} is the coefficient vector.
- Sometimes, b_{1}, \ldots, b_{p} are called parameters of the linear model, and \mathbf{b} is the parameter vector.
- In R, we obtain b using the coef () function as demonstrated below.

Checking the coefficient estimates from R

- Consider the example from Chapter 1, where L_detrended is life expectancy for each year, after subtracting a linear trend, and U_detrended is the corresponding detrended unemployment.
lm <- lm(L_detrended~U_detrended)
coef(lm1) this is our $\underset{\sim}{b}$

```
## (Intercept) U_detrended
## 0.2899928 0.1313673
```


- Now, we can construct the \mathbb{X} matrix corresponding to this linear model and ask R to compute the coefficients using the formula (LM4).
argument I
$\mathrm{X}<-$ cbind(U_detrended, intercept=rep(1, length(U_detrended)))
function life expectant.

\#\# U_detrended 0.1313673
\#\# intercept 0.2899928

Checking the \mathbb{X} matrix we constructed

- The matrix calculation on the previous slide matches the coefficients produced by $\operatorname{lm}()$.
- We're fairly sure we got the computation right, because we exactly matched $\operatorname{lm}()$, but it is a good idea to look at the \mathbb{X} matrix we constructed.

```
head(X)
    length(U_detrended)
## U_detrended intercept ## [1] 68
## 1 -1.0075234 1
## 2 1.1027941 1
## 3 0.4881116 1
## 4 -1.5349043 1 ## [1] 68 2
## 5 -1.8662535 1
## 6 -2.0059360 1
```


Fitted values

- The fitted values are the estimates of the data based on the explanatory variables. For our linear model, these fitted values are

$$
\hat{y}_{i}=b_{1} x_{i 1}+b_{2} x_{i 2}+\cdots+b_{p} x_{i p}, \quad \text { for } i=1,2, \ldots, n \text {. }
$$

- The vector of least squares fitted values $\hat{\mathbf{y}}=\left(\hat{y}_{1}, \ldots, \hat{y}_{n}\right)$ is given by the fitted values

$$
\begin{array}{r}
\hat{\mathbf{y}}=\mathbb{X} \mathbf{b}=\mathbb{X}\left(\mathbb{X}^{\mathrm{T}} \mathbb{X}\right)^{-1} \mathbb{X}^{\mathrm{T}} \mathbf{y} \text {. we also predicted values } \tag{LM5}\\
\text { for a newr cheaswement at the }
\end{array}
$$

- It is worth checking we now understand how R produces the fitted values for predicting detrended life expectancy using unemployment: Same for predicting detrended life expectancy using unemployment: ${ }^{\text {predictors }}$
my_fitted_values<-X \%*\% solve(t(X) \% \% \% X) \% \% \% t (X) \% $\%$ \% L_detrended
lm1\$fitted.values [1:2]
my_fitted_values [1:2]
we cond also (i) lide at docamentation; (ii) [ook at sorrce code \#\# [1] $0.15763710 .4348639 \quad$ \#\# [1] 0.15763710 .4348639
- We see that the matrix calculation (LM5) exactly matches the fitted values of the $\operatorname{lm} 1$ model that we built earlier using $\operatorname{lm}()$.

Plotting the data

- We have already seen plots of the life expectancy and unemployment data before. When you fit a linear model you should look at the data and the fitted values. We plot the fitted values two different ways.
neither is right or wong. for this to work the plot(L_detrended~U_detrended) argument should be lines(U_detrended,my_fitted values, 1 ty="solid", col="blue") abline (coed (lm), lty="dotted", col="red", lwd=2)
 (intercept, slope), not (slope intercept)
Question 3.2. Learn about the abline() and lines() functions. Explain to yourself why the solid blue line and the dotted red line coincide. ?abline and ? lines. lines () is connecting the points (x_{i}, \hat{y}_{i}) and abline () is drawing the line with slope\& U_detrended interest matching the In coefficients.

Review of summation signs

- To do statistics, we often want to sum things up over all data points so the summation sign $\sum_{i=1}^{n}$ comes up frequently.
- The basic trick to understand $\sum_{i=1}^{n}$ is that anything written using a summation sign can be written as a usual sum.
- As long as you can expand from $\sum_{i=1}^{n} z_{i}$ to $z_{1}+z_{2}+\cdots+z_{n}$, and then contract back again from $z_{1}+z_{2}+\cdots+z_{n}$ to $\sum_{i=1}^{n} z_{i}$, then you can use what you already know about + to work with $\sum_{i=1}^{n}$.
Question 3.3. Can we take a constant outside a sum sign? Is it true that

$$
\begin{aligned}
& \sum_{i=1}^{n} c y_{i}=c \sum_{i=1}^{n} y_{i} . \\
c y_{i}= & c y_{1}+c y_{2}+\ldots+c y_{n} \text { distributive } \\
= & c\left(y_{1}+y_{2}+\ldots+y_{n}\right) \text { disule } \\
= & c \sum_{i=1}^{n} y_{i}
\end{aligned}
$$

Example: summation of a constant
Question 3.4. What happens if we sum a constant? Explain why

$$
\sum_{i=1}^{n} c=n c .
$$

This is adding C n times.

$$
\begin{aligned}
& \sum_{i=1}^{n} c=\underbrace{c+c+\ldots+c}_{n \text { terms }}=n c . \\
& \sum_{j=a}^{b} x_{i}=x_{i}+x_{i}+\ldots x_{i}=(b-a+1) x_{i} \\
& \underbrace{\substack{j=a+1}}_{j=a \quad j \quad j_{j+1}}
\end{aligned}
$$

Deriving the formula for the least squares coefficient vector

- We derive (LM4) for the simple linear regression model (SLR1).
- For simple linear regression, the residual sum of squares (RSS) is
$\underset{\sim}{b}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} y$ hore, $\frac{b}{\sim}=(M, C)$

$$
\mathrm{RSS}=\sum_{i=1}^{n}\left(y_{i}-m x_{i}-c\right)^{2}
$$

- To minimize RSS, we differentiate. Differentiation will not be tested in quizzes and exams. We present it here to understand where the formula (LM4) for \mathbf{b} comes from.
- Calculus fact: To find m and c minimizing RSS, we can differentiate with respect to m and c and set the derivatives equal to zero.
- Calculus fact: Differentiating RSS with respect to m treating c as a constant is called a partial derivative, written as $\partial \mathrm{RSS} / \partial m$.
- Calculus fact: If we can find m and c with $\partial \mathrm{RSS} / \partial m=0$ and $\partial \mathrm{RSS} / \partial c=0$ we have found a minimum or maximum of RSS.
- RSS is non-negative and can get arbitrarily large for bad choices of m and c. It has a minimum but not a maximum.

Differentiating RSS with respect to m

- Recall that RSS $=\sum_{i=1}^{n}\left(y_{i}-m x_{i}-c\right)^{2} . \quad f(x)=x^{2}$,

Worked example 3.1. Apply the chain rule to differentiate the i th term in the sum for RSS. Check that

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

$$
\frac{\partial}{\partial m}\left(y_{i}-m x_{i}-c\right)^{2}=\left(-x_{i}\right) \cdot 2\left(y_{i}-m x_{i}-c\right)
$$

This is a direct appheation of the chaissule.

Worked example 3.2. Since the derivative of a sum is the sum of the derivatives, check that

$$
\begin{aligned}
\frac{\partial}{\partial m} R S S & =\sum_{i=1}^{n}\left(-x_{i}\right) \cdot 2\left(y_{i}-M x_{i}-c\right) \\
& =2 \sum_{i=1}^{n}\left[m x_{i}^{2}+c x_{i}-x_{i} y_{i}\right]
\end{aligned}
$$

Differentiating RSS with respect to c

A similar calculation, which you can check if you want the exercise, gives $\frac{\partial}{\partial c} \mathrm{RSS}=2 n c-2 \sum_{i=1}^{n} y_{i}+2 m \sum_{i=1}^{n} x_{i}$.

The normal equations

note: x_{i} and y_{i} we not unknown. They we data!

- Now we set the derivatives to zero. This minimizes the residual sum of squares (RSS) giving the least squares values of m and c
- This gives a pair of simultaneous linear equations for m and c :
(LS1) $\{$

$$
\begin{aligned}
m \sum_{i=1}^{n} x_{i}^{2}+c \sum_{i=1}^{n} x_{i} & =\sum_{i=1}^{n} x_{i} y_{i} \\
m \sum_{i=1}^{n} x_{i}+c n & =\sum_{i=1}^{n} y_{i}
\end{aligned}
$$

- These are called the normal equations.
- We will show they can be written in matrix form as

$$
\begin{equation*}
\mathbb{X}^{\mathrm{T}} \mathbb{X} \mathbf{b}=\mathbb{X}^{\mathrm{T}} \mathbf{y} \tag{LS2}
\end{equation*}
$$

$$
, b=(m, c)
$$

- Therefore, the solution to the normal equations is

$$
\mathbf{b}=\left[\mathbb{X}^{\mathrm{T}} \mathbb{X}\right]^{-1} \mathbb{X}^{\mathrm{T}} \mathbf{y}
$$

- This shows (LM4) solves (LS1) and so minimizes the RSS.

Simple linear regression in matrix form

- Recall the subscript form for the simple linear regression model,

$$
\begin{aligned}
& y_{i}=m x_{i}+c+e_{i}, \text { for } i=1, \ldots, n \\
& \text { why is the intercept cone a }
\end{aligned}
$$

- The matrix form for this model is column of ones?

$$
\mathbf{y}=\mathbb{X} \mathbf{b}+\mathbf{e} \text { the intercept shows }
$$

$$
\text { where } \mathbf{y}=\left(y_{1}, \ldots, y_{n}\right), \mathbf{b}=(m, c), \mathbf{e}=\left(e_{1}, \ldots, e_{n}\right) \text {, and } \mathbb{X} \leq[\mathbf{x} 1] \text { for }
$$ column vectors $\mathrm{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $1 \neq(1,1, \ldots, 1)$. This is a

- Written out in full, this matrix form is case where moving

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
c
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right] \begin{gathered}
\text { subscript } \\
\text { notation } \\
\text { adds } \\
\text { Clarity }
\end{gathered}
$$

Evaluating $\mathbb{X}^{\mathrm{T}} \mathbb{X}$ and $\mathbb{X}^{\mathrm{T}} \mathbf{y}$ for simple linear regression
Question 3.5. For this \mathbb{X}, check that $\mathbb{X}^{\mathrm{T}} \mathbb{X}=\left[\begin{array}{lc}\sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i} \\ \sum_{i=1}^{n} x_{i} & n\end{array}\right]$

$$
\mathbb{X}^{\top} \mathbb{X}=\left[\begin{array}{cccc}
\frac{x_{1}}{} x_{2} & \cdots & x_{n} \\
1 & 1 & \cdots & 1
\end{array}\right]\left[\left.\begin{array}{ccc}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
x_{n}
\end{array} \right\rvert\,\right.
$$

Now do matrix Multiplication, using $\sum_{i=1}^{n} 1=1$
Question 3.6. Also, check that $\mathbb{X}^{\mathrm{T}} \mathbf{y}=\left[\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} y_{i}}\right]$

The normal equations in matrix form

Question 3.7. Check that (LSH) in matrix form is

$$
\begin{aligned}
& {\left[\frac { \sum _ { i = 1 } ^ { n } x _ { i } ^ { 2 } \sum _ { i = 1 } ^ { n } x _ { i } } { \sum _ { i = 1 } ^ { n } x _ { i } } n \left[\left[\begin{array}{c}
m \\
c
\end{array}\right]=\left[\frac{\left.\sum_{i=1}^{n} x_{i} y_{i}\right]}{\sum_{i=1}^{n} y_{i}}\right]\right.\right.} \\
& M \sum_{i=1}^{n} x_{i}^{2}+c \sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} x_{i} y_{i} \\
& M \sum_{i=1}^{n} x_{i}+n c
\end{aligned}=\sum_{i=1}^{n} y_{i} .
$$

- Now we have found that (LS2) and (LS1) are the same equations. Therefore they must have the same solution, which is $\mathbf{b}=\left(\mathbb{X}^{T} \mathbb{X}\right)^{-1} \mathbb{X}^{\mathrm{T}} \mathbf{y}$.
- We have shown that $\mathbf{b}=\left(\mathbb{X}^{\mathrm{T}} \mathbb{X}\right)^{-1} \mathbb{X}^{\mathrm{T}} \mathbf{y}$ is the least squares coefficient vector for simple linear regression.

