
Chapter 4. Probability models

• A probability model is an assignment of probabilities to possible
outcomes.

• We don’t observe these probabilities. We observe a particular dataset.

• If we treat the dataset as an outcome of a probability model, we can
answer questions such as,

“If there really is no association between unemployment and life
expectancy, what is the probability we would see a least squares linear
model coefficient as large as the one we actually observed, due to random
fluctuations in the data?”

• Here, we are particularly interested in developing a probability model for
the linear model.

• First, we need some basic tools for probability models: random variables,
the normal distribution, mean, variance and standard deviation.



Random variables and events

• A random variable X is a random number with probabilities assigned
to outcomes.

Example: Let X be a roll of a fair die. A natural probability model is to
assign probability of 1/6 to each of the possible outcomes 1, 2, 3, 4, 5, 6.

• An event is a set of possible outcomes.

Example: For a die, E = {X ≥ 4} = {4, 5, 6} is the event that the die
shows 4 or more.

• We can assign probabilities to events just like to outcomes.

Example: For a die, P(E) = P(X ≥ 4) = 3/6 = 1/2.

Question 4.1. If an experiment can be repeated many times (like rolling a
die) how can you check whether the probability model is correct?

.



Notation for combining events

• {E or F} is the event that either E or F or both happens.

• Since E and F are sets, we can write this as a union, {E or F} = E ∪ F
• {E and F} is the event that both E and F happen.

• We can write this as an intersection,

{E and F} = E ∩ F

• Usually, we prefer “and/or” to “intersection/union”.

Question 4.2. When does this formal use of “and” and “or” agree with
usual English usage? When does it disagree?



The basic rules of probability

1 Probabilities are numbers between 0 (impossible) and 1 (certain).

2 Let S be the set of all possible outcomes. Then, P(S) = 1.
Example: For a die, P(X ∈ {1, 2, 3, 4, 5, 6}) = 1.

3 Events E and F are called mutually exclusive if they cannot happen
at the same time. In other words, their intersection is the empty set.
In this case,

P(E or F ) = P(E) + P(F ).

Question 4.3. You roll a red die and a blue die. Let
E = {red die shows 1}, F = {blue die shows 1}, G = {red die shows 6}.
(a) Are E and F mutually exclusive? (b) How about E and G? (c) How
about F and G?



Discrete random variables

• X is a discrete random variable if we can list all its possible outcomes.
Let’s call them x1, x2, . . ..

• A discrete random variable is specified by probability that the random
variable takes each possible outcome,

pi = P[X = xi], for i = 1, 2, 3, . . .

• It can be helpful to plot a graph of pi against xi.

• This graph is called the probability mass function.

Question 4.4. Sketch the probability mass function for a fair die.



Simulating the law of large numbers

• The “law of large numbers” says that the proportion of each outcome i
in a large number of draws of a discrete random variable approaches pi.

• We can test this by simulation, using the replicate() command.

Worked example 4.1. In R, a random draw with replacement from
{1, 2, 3, 4, 5, 6} can be obtained by sample(1:6,size=1) This is
equivalent to one roll of a fair die.

hist(replicate(n=100,sample(1:6,size=1) ),

main="",prob=TRUE,breaks=0.5:6.5,xlab="n=100",ylim=c(0,0.21))

replicate()
sample(1:6,size=1)


Continuous random variables: the normal distribution

• A continuous random variable is one which can take any value in an
interval of the real numbers.

Example: physical quantities such as time and speed are not limited to a
discrete set of possible values.

• We will often see the normal distribution.

• Let’s look at normal random variables simulated by R using rnorm().

rnorm(n=10,mean=20,sd=5)

## [1] 14.01141 26.18597 17.18972 21.12226 15.20211 30.34660

## [7] 19.94277 22.05179 27.73804 25.94906

• The arguments mean=20,sd=5 of rnorm() are the parameters of the
normal distribution.

• A normal random variable can take any numeric value: it is continuous.

• Values are centered on the mean and are usually less than twice the
standard deviation (sd) from the mean.

rnorm()
mean=20, sd=5
rnorm()


A histogram of normal distribution simulations

hist(rnorm(n=100,mean=20,sd=5),

main="",xlab="n=100")

• Large samples from the normal distribution follow a bell curve
histogram.

• From smaller samples, this is harder to see.



Finding probabilities for a continuous random variable

• A continuous random variable X has a probability density function
f(x) which is integrated to find the probability that X falls in any
interval:

P(a < X < b) =

∫ b

a
f(x) dx

• Write X ∼ normal(µ, σ) to mean X is a normal random variable with
mean µ and sd σ. The probability density function of X is

f(x) =
1√

2πσ2
e−(x−µ)

2/2σ2

and so

P(a < X < b) =

∫ b

a

1√
2πσ2

e−(x−µ)
2/2σ2

dx

• This integral has no closed form solution.

• Fortunately, R provides pnorm() and qnorm() that let us work with
probabilities for the normal distribution numerically.

pnorm()
qnorm()


Calculating probabilities for the normal distribution

• pnorm() finds the left tail of the normal distribution.

Example: pnorm(25,mean=20,sd=5) computes the shaded area above.

• We don’t have to do calculus with the normal integral, but we do use
the relationship between the curve, area under the curve, and probability.
And we must know how to compute these things in R.

• For X ∼ normal(µ, σ),

pnorm(x,mu,sigma) = P(X ≤ x) =

∫ x

−∞

1√
2πσ2

e−(y−µ)
2/2σ2

dy

pnorm()
pnorm(25,mean=20,sd=5)
pnorm(x,mu,sigma)


Finding probabilities that are not a left tail

Question 4.5. Let X ∼ normal(10, 10). Sketch a shaded area under a
curve giving P(0 ≤ X ≤ 10). Write this probability as an integral and as R
code.

Hint: To use pnorm(), think of the shaded area as the difference of two
left tails.

pnorm()


Other continuous distributions

• There are many continuous random variables that are not normally
distributed.

• For example, we could explore the uniform or exponential distributions.

hist(runif(100)) hist(rexp(100))

• Normal random variables are the building block for all the random
variables we work with in this class.

• Let’s investigate why the normal distribution is so important.



Sums and averages follow the normal distribution

• When we sum many random quantities, the sum often follows a normal
distribution even if each term in the sum is not normally distributed.

• This property is called the central limit theorem.

• It is an empirical fact as well as a mathematical theorem!

• Averaging is multiplying the sum by a constant (1/n). A bell curve is
still a bell curve when we rescale by multiplication.

Question 4.6. Would you expect a histogram of student heights to follow
a normal curve? Why? Why not?

Question 4.7. Would you expect a histogram of the daily change in the
Dow Jones stock market index to follow a normal curve? Why? Why not?



Demonstrating the central limit theorem with dice

• sample(1:6,2,replace=TRUE) simulates the outcome of rolling two
dice.

• sum(sample(1:6,2,replace=TRUE)) simulates the sum of two dice.

• replicate() lets us see what happens if we do this many times

dice2 <- replicate(50000,sum(sample(1:6,2,replace=TRUE)))

dice3 <- replicate(50000,sum(sample(1:6,3,replace=TRUE)))

dice10 <- replicate(50000,sum(sample(1:6,10,replace=TRUE)))

dice20 <- replicate(50000,sum(sample(1:6,20,replace=TRUE)))

• Guess how many dice you have to add up before the histogram looks
normal?

sample(1:6,2,replace=TRUE)
sum(sample(1:6,2,replace=TRUE))
replicate()


hist(dice2,prob=TRUE,breaks=(min(dice2)-0.5):(max(dice2)+0.5))

normal.x <- seq(from=min(dice2),to=max(dice2),length=100)

normal.y <- dnorm(normal.x,mean=mean(dice2),sd=sd(dice2))

lines(normal.x,normal.y,col="blue")

2 dice

10 dice

3 dice

20 dice

Question 4.8. Why do we use prob and breaks arguments to hist()?

prob
breaks
hist()


More normal approximation situations

Question 4.9. Would you expect detrended data on life expectancy at
birth to follow a normal distribution? Explain.

Question 4.10. Consider the mice weight data for HW1 with mice
randomized to two treatments: a high fat diet and a usual lab diet. (a)
Would you expect the weights of mice in each treatment group to follow a
normal distribution? (b) If the experiment were replicated ten times, and
an average weight calculated for each of these ten replications, would you
expect the ten averages to follow a normal distribution? Are your answers
different for (a) and (b)?



The sample mean and the expectation of a random variable

• The sample mean or average of y = (y1, . . . , yn) is

ȳ =
1

n

n∑
i=1

yi

• The expected value of a random variable X taking possible values
x1, x2, . . . with probabilities p1, p2, . . . is

E[X] =

∞∑
i=1

xipi

• If we have many draws of X, the sample proportion taking value xi
becomes close to pi and so the sample mean becomes close to the
expected value.

• If X is a continuous random variable with density f(x) the sum for
expected value becomes an integral,

E[X] =

∫ ∞
−∞

xf(x) dx



The sample mean and expectation using R

• We’ve already seen the mean() function which computes the sample
mean of a numeric vector.

• One way to compute the expected value of a random variable is to take
the sample mean of many realizations of the random variable.

x <- rnorm(10000,mean=20,sd=5)

mean(x)

## [1] 19.96731

• The same calculation can be done using replicate():

y <- replicate(n=10000,rnorm(1,mean=20,sd=5))

mean(y)

## [1] 19.96731

• We can guess (correctly!) that the expected value of a normal random
variable matches its mean parameter.

• The expected value of a random variable is sometimes called its mean.
We prefer ”expected value” to distinguish from the “sample mean.”

mean()
replicate()
mean


The expected value is not necessarily a possible value

Question 4.11. Find the expected value of a roll of a fair six-sided die.
(a) By using the definition E[X] =

∑∞
i=1 xipi.

(b) By averaging a large number of simulated dice using R. Write some R
code that is a starting point for testing and debugging.



The sample variance and the variance of a random variable

• The sample variance of y = (y1, . . . , yn) is

var(y) =
1

n− 1

n∑
i=1

(yi − ȳ)2

• The variance of a random variable X is defined in terms of the expected
value as

Var(X) = E
[(
X − E[X]

)2]
• If X is a random variable, then so is Y =

(
X − E[X]

)2
. Each possible

outcome of X (say, X = x) matches an outcome Y =
(
x− E[X]

)2
.

• Collections of numbers have a sample variance computed by var (not
capitalized). Random variables have a variance computed with Var
(capitalized).

• People do not always make this distinction, but we will try to.

• In R, var() calculates the sample variance.

var()


Standard deviation

• The sample standard deviation of y = (y1, . . . , yn) is the square root
of the sample variance.

sd(y) =
√

var(y)

• The standard deviation of a random variable X is the square root of its
variance.

SD(X) =
√

Var(X)

• In R, sd() computes the sample standard deviation.

• We can compute SD(X) as the sample standard deviation of a large
number of draws of the random variable X.

x <- rnorm(10000,mean=20,sd=5)

sd(x)

## [1] 5.061782

• As we might anticipate, this confirms that the sd parameter of the
normal distribution matches its standard deviation.

sd()
sd


Expectation, variance and standard deviation of mX + c

• Let X be a random variable and let Y = mX + c.

• Y is also a random variable. If X takes value x, Y takes value mx+ c.

• Expectation is linear, meaning

E[mX + c] = mE[X] + c

• Variance doesn’t depend on c. It is a measure of spread. Adding a
constant shifts the center of a distribution but doesn’t change the spread.

• Variance is quadratic in m.

Var(mX + c) = m2 Var(X)

• Standard deviation therefore scales with m.

SD(mX + c) = m SD(X)

• SD scales nicely. Var can be easier to use for calculations.



The standard normal distribution

• Let Z ∼ normal(0, 1), so E[Z] = 0 and SD(Z) = 1.

• Z is called a standard normal random variable.

• Let X = µ+ σZ.

• We use linearity of expectation and the scaling property of standard
deviation to calculate

E[X] = µ+ σE[Z] = µ, SD(X) = σ SD(Z) = σ

• A bell curve is still a bell curve if you shift or rescale it, so X also follows
a normal distribution.

• Therefore, X ∼ normal(µ, σ).

• We can work the other way around: if X ∼ normal(µ, σ) then
Z = (X − µ)/σ has Z ∼ normal(0, 1).



Standardizing into standard units

• After subtracting the mean and dividing by the standard deviation, any
normal random variable follows the standard normal distribution.

• This is called standardizing. We say we are working in standard units.

• Calculating in standard units was essential before computers: people
used tables giving probabilities for the standard normal distribution.

pnorm(2)-pnorm(-2)

## [1] 0.9544997

• Thinking in standard units remains helpful. For example, as shown by
the shaded area above, 95% of normal random variables are within 2 SD
units of their mean.



Question 4.12. Wikipedia:List_of_average_human_height_worldwide

says the average height of an American male aged 20-29 is 176.4 cm
(5′ 9.5′′). Suppose the standard deviation of height is 2.5′′. The average
height of an NBA basketball player is about 6′ 7.5′′.

(a) Write 6′ 7.5′′ in standard units for this population.

(b) Estimate what percentage of male UM students are as tall as an
average NBA player. Explain your assumptions. Sketch the answer as an
area under the standard normal curve. Write this probability as an integral
and show how to compute it via a call to pnorm().

Wikipedia:List_of_average_human_height_worldwide
pnorm()

