Chapter 6. Confidence intervals and hypothesis testing
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e An interval [u, v] constructed using the data y is said to cover a
parameter 0 if u < 0 < wv.

e [u,v] is a 95% confidence interval (Cl) for 6 if the same construction,

applied to a large number of draws from the model, would cover 6 95% of
the time.

e A parameter is a name for any unknown constant in a model. In linear

models,each component i, ..., 3, of the coefficient vector 3 is a

parameter. The only other parameter is o, the standard deviation of the
measurement error.
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e A confidence interval is the usual way to represent the amount of
uncertainty in an estimated parameter.

e The parameter is not random. According to the model, it has a fixed but
unknown value.

e The observed interval [u,v] is also not random.

e An interval [U, V] constructed using a vector of random variables Y

defined in a probability model is random. %, U &l V & fhudpn
_ _ - Vorabls .
e If the model is appropriate, then it is reasonable to treat the observed

confidence interval [u, v] like a realization from the probability model.
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Not quite a confidence interval for a linear model

e Consider estimating (31 in the linear model Y = X3 + € with

e~MVN(0,0%I).  § - caond Y o foudom vanable.
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e The mterval [61 —1.96SD(51), 1 + 1.96 SD(Bl)] is almost a  Stadord
confidence interval. Sadly, we don't know o. vais
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An approximate confidence interval for a linear model
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e An approximate 95% ClI for f3; is sw/qu values.
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(b1~ L9GSE(b1), b+ LISSE(®) ] | filng P Porefers.
where y = Xb + e with SE(bl) =5 [(XTX)f [
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e The standard error SE(b;) is an estimated standard deviation of 61
under the linear model Y = X3 + € with € ~ MVN(0, 51).
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A ClI for association between unemployment and mortality

‘])nOCM( groct (0-9%5)He_ 2500 BF 0 eshmake s “ds value
= y dvided by s 35 Hoe , His s chte;!DﬂQ
;.% @ & Tvalug inste Snig rR QvPoIs r€

cl <- 3 (Im(L_detrended~U_detrended))$coefficients ;
2 St on,
#i#t Estimate Std. Error t value Pr(>|tl)

## (Intercept) 0.2899928 0.09343146 3.103802 0.002812739

## U_detrended O. 1313673;.0.06321939 2.077959 0.041606370
0 9%>

("CI =

&# CI = [ 0.0074596 , 0.2552751 ]
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Interpreting and criticizing a p-vaiue

Question 6.2. We appear to have fouCnd ewde%cemthat each percentage
point of unemployment above trend is associated with about 0.13 years of
additional life expectancy, since the 95% Cl doesn't include zero. Do you
believe this discovery? How could you criticize it? .
A CT depuds oo Pidonbilly vl Auy agumplim 1o Yo
prihabiliy ruded can be grechmed Fo ém Yo CI r1afe
dlispite Assvargh s = effovs ae indgpmdbct nu%m Venaldys ;
(Q}M l"‘W I/] QQ;"J?O\/\ '&N\M )
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The quUMPbmA § Yo We Chn Jeat . b Y/
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, Even € Yo Mitel 5 @
67')(050“9('\7 &M‘E’V 0/105 Sodichical G%P]Wlt‘\})dw ﬂ-&,
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Association is not causation
Asocabon

“Whatever phenomenon varies in any manner whenever another.
_bhenomenon varies in some particular manner, is either a cause or an
effect of that phenomenon, or is connected with it through some fact of
causation.” (John Stuart Mill, A System of Logic, Vol. 1. 1843. p. 470.
bosond casonably, stabishical dowbt
e Put differently: If A and B are associated statistically, we can infer that
either A causes B, or B causes A, or both have some common cause C.

e A useful mantra: Association is not causation.

e Writing a linear model where A depends on B can show association but
we need extra work to argue B causes A. We need to rule out A causing
B and the possibility of any common cause C.
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Association is not causation: a case study

Question 6.3. Discuss the extent to which the observed association
between detrended unemployment and life expectancy in our data can and
cannot be interpreted causally.

Unemployuect 1 (MLO"QM Verahlos Cycka m Yo
boom m% cycles. We c:m ol /mvxay vw)"gla&; (2)
Rut, W we add Many vanables & will b bt fo
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pausile, vasshle Juet explans botn Fha  buom/best
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Hypothesis tests

e We try to see patterns in our data. We hope to discover phenomena
that will advance science, or help the environment, or reduce sickness and
poverty, or make us rich, ...

e How can we tell whether our new theory is like seeing animals or faces in
the clouds?

e From Wikipedia: “Pareidolia is a psychological phenomenon in which
the mind responds to a stimulus ... by perceiving a familiar pattern where

none exists (e.g. in random data)".

e The research community has set a standard: The evidence presented to
support a new theory should be unlikely under a null hypothesis that the
new theory is false. To quantify unlikely we need a probability model.
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Hypothesis tests and the scientific method

e From a different perspective, a standard view of scientific progress holds
that scientific theories cannot be proved correct, they can only be falsified
(https://en.wikipedia.org/wiki/Falsifiability).

e Accordingly, scientists look for evidence to refute the null hypothesis
that data can be explained by current scientific understanding.

e If the null hypothesis is inadequate to explain data, the scientist may
propose an alternative hypothesis which better explains these data.

e The alternative hypothesis will subsequently be challenged with new
data.


https://en.wikipedia.org/wiki/Falsifiability

The scientific method in statistical language

@ Ask a question

@ Obtain relevant data.

© Write a null and alternative hypothesis to represent your
question in a probability model. This may involve writing a linear
model so that 51 = 0 corresponds to the null hypothesis of “no
effect” and 81 # 0 is a discovered “effect.”

@ Choose a test statistic. The sample test statistic is a quantity
computed using the data summarizing the evidence against the null
hypothesis. For our linear model example, the least squares coefficient
b1 is a natural sample test statistic for the hypothesis 3; = 0.

© Calculate the E—value, the probability that a model-generated test
statistic is at least as extreme as that observed. For our linear model
example, the p-value is P(|Bl| > |b1|)g We can find this probability,
when ;1 = 0, using a normal approximation: b, « a domstoat

@ Conclusions. A small p-value {often, < 0.05) is evidence favoring
rejection of the null hypothesis\ The data analysis may suggest new
questions: Return to Step 1. 'f, 15 & (hadom \/W“\?)/
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Using confidence intervals to construct a hypothesis test

e |t is often convenient to use the confidence interval (@s a sample test

statistic)’f'o avstuct o LW(’)U?DLQ?S Test.

e |f the confidence interval doesn’t cover the null hypothesis, then we have
evidence to reject that null hypothesis.

o |f we do this test using a 95% confidence interval, we have a 5% chance
that we reject the null hypothes!is_ if it is true. This follows from the
definition of a confidence interval: whatever the true unknown value of a
parameter 0, a model-generated confidence interval covers 6 with

probability 0.95. PLCT conss B, wlan B) s Ha)= 075

o
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Some notation for hypothesis tests

9 -Sided_fext

,A/\_Ifm/\mfidm

e The null hypotheS|s is Hy and the alternatlve is H,.o" H‘

e We write ¢ for the sample test statistic calculated using the data y. We
write 1" for the model-generated test statistic, which is a random variable
constructed by calculating the test statistic using a random vector Y
drawn from the robablllt model under H, .

2 y CIH s e ot

/.).I
e The p- value |s pval lsT)T] > |t|). Here, we are assuming “extreme”
means “large in magnitude.” Occasionally, it may make more sense to use
pval = P(T > t).

e We reject Hy at significance level « if pval < . Common choices of «
are a = 0.05, @ = 0.01, a = 0.001.

Shodd we 4p 'P(‘T>-z;) o PET) >/-6\)2 W’Mf Wien €

&/‘V 2_51052.0( “fest
[- S}dw—igs-eé A3 sfean CMdky o 2sided Test saless

hove, S‘Hmb séinhdic s Yor %\n\eub owly | af*Modwe s cx)ss:fohz.
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Alternative ways to report a hypothesis test

Question 6.4. When we report the results of a hypothesis test, we can
either (i) give the p-value, or (ii) say whether H is rejected at a particular
significance level. What are the advantages and dlsadvantages of each?

Give boda | It 15 mdmiat aways aaml Rpott 42 prralue.
() Is bl f you Moy wask o feagp el 2ing Yo
Olakes — y0n (on Fest agens locks 0t amy Loved om
Wenk |
() The s ahzgute el alove e DUPAT .
Teople somepues wnle ¥ 76r siolicat o O-05,
#* A 516 A/p,mdac')l < ,ﬁM ot 0001
Whea Low Mabac: Jot Op"’&?k 7%“ iy mveme-rt ffj/hﬁimt
() p-valug albre doesat ack & Grmclusion, Jua fese "
lwel ostds interpretotion .

0-0% T« Yhe Mgst vsval Jovel fegpiedk Tor Soubhe Pulg‘l%a%w.
) 'C.dds whate, lots 2&‘ dado o€ aved «b swber Mdon @ s my/wf&d
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Terminology for test statistics

e Recall that a sample test statistic is a summary of the data,
constructed to test a hypothesis.

e A model-generated test statistic is the same summary applied to
random variables drawn from a probability model. Usually, this probability
model represents the null hypothesis. We can say “model-generated test
statistic under Hy" to make this explicit.

e Distinguishing between sample test statistics and model-generated ones
under a null hypothesis is critical to the logic of hypothesis testing.

Example: testing whether 51 = 0 in the linear model Y = X3 + ¢,
e The sample test statistic is b1 = [(XTX)_IXTy]l.
e A model-generated test statistic is 51 = [(XTX)_IXTY] I



A hypothesis test for unemployment and mortality

x,6 AL Vv
Question 6.5. Write a formal hypothesis test’of the null hypothesis that
there is no association between unemployment and mortality. Compute a
p-value using a normal approximation. What do you think is an appropriate
significance level « for deciding whether to reject the null hypothesis?
Steps: (1) write the probability model; (2) write the null
hypothesis; (3) specify your test statistic; (4) find the distribution
of the test statistic under the null hypothesis; (5) calculate the

p-value;, (6) draw conclusions.

. Pdoawilhy Moced i subscrpt-form: Y- = Bx; P, r £ Hor
C2len) with N= Y whe i o deNendpd e 077,/1404,‘(77{;/*
flo % yeur ol €:~ wd momal (0,6, Piao By ar

vnRajunt crastonts . Y. s a P(dgqé;[lfv vrled 'F(\)*“ W
e dita 1, e denerded life eqpictarcy 4o L
'ﬂlﬂ. l‘/f"/l o0 X, ‘:
2 . noll \/\Y@U-]'L\QS-‘S-_ Hy - B,=0, so any obsecved | or sinple
asncation Yefueen yaowdoymant, and il /“r%%gbsdm
eggeckiney 6 JUSt dhane Variahion. v
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A hypothesis test: continued

3. Test stabshc. WR wuse b, M,cwpolo. least s bb%umj e :
ceSSi1on @C‘@.’Creﬁt S\nlSU?u ncler +h':

4 (nder e ol hyporttesS, ﬁ uwomal?o SD((’;) ;:J
whece SB('F}.) O_W ' Se we dnit QN

J, W Ut insteqd SC(D,)=S HXTXy‘Ju
Now fe R ondpit cbove,
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walug_ = 2 prom(-0-3,
z-lest. meon = O, ~0u3l
norve I~ S = o{oo’g) o 0-131
G.(’Q‘UX M&dowe - 0 03%
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Normal approximations versus Student’s t distribution

e Notice that summary(1m(...)) gives tvalue and Pr(>[t]).

e The tvalue is the estimated coefficient divided by its standard error.
This measures how many standard error units the estimated coefficient is
from zero.

e Pr(>|t|) is similar, but slightly larger, than the p-value coming from
the normal approximation.

e R is using Student's t distribution, which makes allowance for chance
variation from using s as an approximation to o when we compute the
standard error.

e R uses a t random variable to model the distribution of the statistic ¢.
Giving the full name (Student'’s t distribution) may add clarity.

e With sophisticated statistical methods, it is often hard to see if they
work well just by reading about them. Fortunately, it is often relatively
easy to do a simulation study to see what is going on.


summary(lm(...))
t value
Pr(>|t|)
t value
Pr(>|t|)

Simulating from Student's t distribution

e Suppose X and X7,..., X, are independent identially distributed (iid)
normal random variables with mean zero and standard deviation o.

e Student's t distribution on d degrees of freedom is defined to be the

distribution of 7' = X /6 where 6 = \/ézgi:l X2,

e A normal approximation would say 7" is approximately normal(0, 1) since
0 is an estimate of o.

e With a computer, we can simulate 7" many times, plot a histogram, and
compare it to the probability density function of the normal distribution
and Student’s t distribution.

Question 6.6. This is almost the same representation of the t distribution
as HW4, What is the difference? Why does it not matter?
(n HW 4‘, we stvalaledd Tz Y ,Y.,2,,.,24

sz i 00wl [0,)

Ly

(€>
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e Here is a different way from HW4 to do the simulation experiment.
e We start by simulating a matrix X of iid normal random variables.
N <- 50000 ; sigma <- 1 ; d <- 10 ; set.seed(23)

X <- matrix(rnorm(N*(d+1) ,mean=0,sd=sigma) ,nrow=N)

e Now, we write a function that computes T" given X1,..., X4, X

T_evaluator <- function(x) x[d+1] / sqrt(sum(x[1:d]"2)/d)

e Then, use apply () to evaluate 7" on each row of X' -
Tsim <- apply(X,1,T_evaluator) ua ) 4 Mfaﬂ'loto usng
PPLyRR, &0 epheatR (> v pooubly Casier

e We add the normal and t densities to a histogram of the simulations.
<

hist(Tsim,freq=F,main="", o ?D\‘
breaks=30,ylim=c(0,0.4)) 2
x <- seq(length=200, =
min(Tsim) ,max(Tsim)) % o ]
lines(x,dnorm(x), a
col="blue", S
lty="dashed") : \

0.0
L

lines(x,dt(x,df=d),
col="red") 6 -4 -2 0 2 4 6


X
apply()
Edward


Comparing the normal and t distributions

e Even with as few as d = 10 degees of freedom to estimate o, the
Student’s t density looks similar to the normal density.

e Student's t has fatter tails. This is important for the probability of rare
extreme outcomes.

e Here, the largest and smallest of the N =5 x 10* simulations are
range(Tsim)

## [1] -6.438830 6.480262

e Let's check the chance of an outcome more than 5 (or 6) standard

deviations from the mean for the normal distribution and the t on 10
degrees of freedom.

2x (1-pnorm(5)) 2% (1-pt (5,df=d))
## [1] 5.733031e-07 ## [1] 0.0005373336
2% (1-pnorm(6)) 2% (1-pt (6,df=d))

## [1] 1.973175e-09 ## [1] 0.0001321089



Hypotheses about predictions from a linear model

e Consider the sample linear model y = Xb + e, where X = [z;;],,xp.
e We might be interested in predicting outcomes at some new set of

explanatory variables x* = (z7,..., ), treated as a 1 X p row vector.
e Making a prediction involves estimating (i) the expected value of a new

outcome; (ii) its variability. In addition, we must make allowance for the
statistical uncertainty in these estimates.

e To do inference, we need a probability model. As usual, consider

Y = X3 + € where €1, ..., €, ~ iid normal(0, c). Also, model a new
measurement at x* as

where €* is another independent draw from the measurement model.

Question 6.7. (a) Why do we want x* to be a row vector not a column
vector? (b) What is the dimension of x*37
‘4/&/ have RWCOLJA, docided @V s a Gloun Vector '710/\

* Mustbe 0w Veckw o Make X [SN o Sa&l&r

xp Pt
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The expected value of a new outcome and its uncertainty

OENZAS TN
e According to the model, the expected value of a new outcome at x*
brton &,
Y =8 (el xere)- % @*E(e)

e But, we don’t know (3. We estimate 3 by the sample least squares %

coefficient b = (X X) D¢ y, which is modeled as a reallzat|on of the

1(UQWW’\V'¢‘4&_,_ .
. A sa J)Ie estimate of the expected value is the fitted value at x*

M D1s-9%n st f
bw} v\d‘\‘ o \() ,ulmd. hss g* = x*b = E] 1 3 6—"‘ 0{2‘014:(:\\ M
ot oeen collected yet - m‘-q‘ﬁ
e The model-generated estimate of the expected value is

“=x B ziB;. X vanoble  ponds
o’ruzjn taddnn SAraws fona o coictel,

e We can find the mean and varlance of Y*. We can use these (together
with a normal approximation) to find a confidence interval for E[Y*]. If
the model is reasonable, this will tell us the uncertainty in using §* to
estimate the sample average of many new outcomes collected at x*.

model-generated Ieasj squares coefﬁu%ﬁ = (X X) XY,
S -
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Question 6.9. Use the formulg”Var(AX) = AVar(X)A " tp show that
Var[f/*] = o2x* (XTX)_IX*T /
-+
Vor () = Vas( x7R.) = =™ Ver(£) 2

) R N 2 T =1 ‘x,)."-
Ma{fzﬂx M}( )Q,\ ~ &,,gq, Scfd'g
d = G'Z D,%*</<TX> x"rT oC vduc.s 7‘8/‘
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7 Lef P2 nxp

0 .
Question 6.10. Check the dimension of Var[Y™*]. Is this correct?

: o vae(§) s 1, as regared
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A ClI for the expected value of a new outcome

e We can get a confidence interval (Cl) for the linear combination of
coefficients x*3 in a similar way to what we did for a single coefficient.

e A standard error is SE(x*b) = s4/x* (XTX)_IX*T.

e Then, making a normal approximation, a 95% Cl is

[x*b — 1.96 SE(x*b) , x*b + 1.96 SE(x*b)].

Example. We consider again the data on freshman GPA, ACT exam
scores and percentile ranking of each student within their high school for
705 students at a large state university. We seek to predict using the

probability model considered in the midterm exam, where freshman GPA is
modeled to depend linearly on ACT score and high school ranking.

gpa <- read.table("gpa.txt",header=T); gpall,]

#i#t ID GPA High_School ACT Year
## 1 1 0.98 61 20 1996



Worked example 6.1. Find a 95% confidence interval for the expected
freshman GPA among students with an ACT score of 20 ranking at the

40th percentile in his/her high school. Vs (KX ) '
Iml <- 1m(GPA~ACT+High_School,data=gpa)

x <- c(1,20,40) =/ what s vaéfdeﬂz

pred <- x¥%*%coef (1lm1l) / @ethceents in Tl moclel
V <- summary(lm1)$cov.unscaled W< negd Yo vse fuo same

s <- summary(1lml)$sigma ol *E)r X hoe.

SE_pred <-sqrt (x%s%V#%x) *s Co. Sememany (Im1)

¢ <- gnorm(0.975) (5 (\GMKS( M/ifee'c>

cat("CI = [", round(pred-c*SE_pred,3), model. Moty ((n,\ ()
", ", round(pred+c*SE_pred,3), "]") / U a4 f

## CI = [ 2.344 , 2.532 ] ] .-

Question 6.11. How would you check whether your answer is plausible?
How would you check the R calculation has done what you/want it to do?

Sarhy clade 16 duodd be befwesn | and 4
Say diatk + Hepechcled value hovid L2 2 e

v b wtoval.
LooR Y Yo dofo,
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A prediction interval for a new outcome

e A 95% prediction interval for a new outcome of a linear model with

explanatory variables x* covers the out?+gme with probability 95%.
. With N, e@o.%/‘temmuaz
e The prediction interval allows for the uncertainty around the mean,

modeled as measurement error in the outcome. Qfev

e The prediction interval aims to cover Y* = x*3 + €* whereas the
confidence interval for the mean only aims to cover E[Y*] = x*,B

e Since ¢* is independent of x*3 we have 7 =% (-2’ ,7 "‘?/g *x [g —Z’prv
Var[Y* —x*8] = Var[V* — x*3] + Var[x* ,@ x* ]

I*T

A oty o’ 4o (X'X)T

0N\S+q/ct So
Vor(x6.-x*E)

T R el

erval, usmg a normal approximation, is

Fows, the N WUW@WC”‘M? s

xb — 196 SEpred , x°b + 1.96 SEprea] G50/ o B

e This suggests using a standard

ut avedetle
g~ SE,
o A 95% prediction i

g ia

or for prediction of
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Using the t distribution for predictions

e We could use a t quantile instead of a normal approximation.

e Just as for parameter confidence intervals, since we use the sample

standard deviation s in place of the true standard deviation o, a t
distribution is more accurate.

e With 705 observations, the normal quantile 1.96=gnorm(0.975) is
identical to 1.96=qt(0.975,df= 702) up to 3 significant figures.

3p % n Ho Metek
t%l; r?S:de 4&6(‘60/_5 O‘?Ve“?/‘)"'-


1.96=qnorm(0.975)
1.96=qt(0.975,df=702)
Edward

Edward


plot(x=fitted.values(lml) ,y=gpa$GPA,ylab="GPA")

abllne(a 0 b= )yhefojtd ‘cﬁ'l’fﬁ( NI
/\
X(i

enied [omive
Yheovem MPS US 5

_ Cxtmpplabion .

inhy lab '
" G o oyt
fitted.values(l

Question 6.12. Is the linear model a good flt for tﬂe data? What \/ﬁﬂ"ulv)
cautions do you recommend when using this model for prediction?

e Cenbow ot s, GPA  and ot Ginler GPA.

The vptval_Ppoxmaho s 1ve mporfent v pedhchov
Hga foe CIs o paameters . The cﬂs‘ﬂ RIS pwvwd'ecs
has @ cetu L it Hepm, sne. b s o sum -
Cordeloubons ¥ Many dAata Pomt via &= KRV VK Y -
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Worked example 6.2. Find a 95% prediction interval for the freshman
GPA of an incoming student with an ACT score of 20 ranking at the 40th
percentile in his/her high school.

1ml <- 1m(GPA~ACT+High_School,data=gpa)

x <- ¢(1,20,40)

pred <- x¥%*%coef (1lm1l) < -

V <- summary(1lml)$cov.unscaled %i@}(;ﬂ m%

s <- summary(lml)$sigma <.

SE_pred <-sqrt (x%*%Vih*¥%x *s

c <- gnorm(0.975)
cat("prediction i

",", round(pred

erval = [
c*SE_pred, 3

, round(pred-c*SE_pred,3),
||:| u)

## prediction inferval = [ 1.3223 , 3.553 ]

Question 6.13. WWhere does this cal
interval for the eYpected value?

lation differ from the confidence

eouns o Sanp G
s svall N (nCEases.
GS N (increnses
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