
Chapter 6. Confidence intervals and hypothesis testing

• An interval [u, v] constructed using the data y is said to cover a
parameter θ if u ≤ θ ≤ v.

• [u, v] is a 95% confidence interval (CI) for θ if the same construction,
applied to a large number of draws from the model, would cover θ 95% of
the time.

• A parameter is a name for any unknown constant in a model. In linear
models,each component β1, . . . , βp of the coefficient vector β is a
parameter. The only other parameter is σ, the standard deviation of the
measurement error.
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• A confidence interval is the usual way to represent the amount of
uncertainty in an estimated parameter.

• The parameter is not random. According to the model, it has a fixed but
unknown value.

• The observed interval [u, v] is also not random.

• An interval [U, V ] constructed using a vector of random variables Y
defined in a probability model is random.

• If the model is appropriate, then it is reasonable to treat the observed
confidence interval [u, v] like a realization from the probability model.
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Not quite a confidence interval for a linear model

• Consider estimating β1 in the linear model Y = Xβ + ε with
ε ∼ MVN(0, σ2I).

• Recall that E[β̂1] = β1 and SD(β̂1) = σ
√[(

XtX
)−1]

11
.

Question 6.1. Find P
(
β̂1 − 1.96 SD(β̂1) ≤ β1 ≤ β̂1 + 1.96 SD(β̂1)

)

• The interval
[
β̂1 − 1.96 SD(β̂1), β̂1 + 1.96 SD(β̂1)

]
is almost a

confidence interval. Sadly, we don’t know σ.
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An approximate confidence interval for a linear model

• An approximate 95% CI for β1 is[
b1 − 1.96 SE(b1) , b1 + 1.96 SE(b1)

]
where y = Xb+ e with SE(b1) = s

√[(
XtX

)−1]
11

.

• The standard error SE(b1) is an estimated standard deviation of β̂1
under the linear model Y = Xβ + ε with ε ∼ MVN(0, σ2I).
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A CI for association between unemployment and mortality

c1 <- summary(lm(L_detrended~U_detrended))$coefficients ; c1

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.2899928 0.09343146 3.103802 0.002812739

## U_detrended 0.1313673 0.06321939 2.077959 0.041606370

beta_U <- c1["U_detrended","Estimate"]

SE_U <- c1["U_detrended","Std. Error"]

z <- qnorm(1-0.05/2) # for a 95% CI using a normal approximation

cat("CI = [", beta_U - z * SE_U, ",", beta_U + z * SE_U, "]")

## CI = [ 0.0074596 , 0.2552751 ]
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Interpreting and criticizing a p-value

Question 6.2. We appear to have found evidence that each percentage
point of unemployment above trend is associated with about 0.13 years of
additional life expectancy, since the 95% CI doesn’t include zero. Do you
believe this discovery? How could you criticize it?
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Association is not causation

“Whatever phenomenon varies in any manner whenever another
phenomenon varies in some particular manner, is either a cause or an
effect of that phenomenon, or is connected with it through some fact of
causation.” (John Stuart Mill, A System of Logic, Vol. 1. 1843. p. 470.

• Put differently: If A and B are associated statistically, we can infer that
either A causes B, or B causes A, or both have some common cause C.

• A useful mantra: Association is not causation.

• Writing a linear model where A depends on B can show association but
we need extra work to argue B causes A. We need to rule out A causing
B and the possibility of any common cause C.
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Association is not causation: a case study

Question 6.3. Discuss the extent to which the observed association
between detrended unemployment and life expectancy in our data can and
cannot be interpreted causally.
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Hypothesis tests

• We try to see patterns in our data. We hope to discover phenomena
that will advance science, or help the environment, or reduce sickness and
poverty, or make us rich, . . .

• How can we tell whether our new theory is like seeing animals or faces in
the clouds?

• From Wikipedia: “Pareidolia is a psychological phenomenon in which
the mind responds to a stimulus ... by perceiving a familiar pattern where
none exists (e.g. in random data)”.

• The research community has set a standard: The evidence presented to
support a new theory should be unlikely under a null hypothesis that the
new theory is false. To quantify unlikely we need a probability model.
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Hypothesis tests and the scientific method

• From a different perspective, a standard view of scientific progress holds
that scientific theories cannot be proved correct, they can only be falsified
(https://en.wikipedia.org/wiki/Falsifiability).

• Accordingly, scientists look for evidence to refute the null hypothesis
that data can be explained by current scientific understanding.

• If the null hypothesis is inadequate to explain data, the scientist may
propose an alternative hypothesis which better explains these data.

• The alternative hypothesis will subsequently be challenged with new
data.

https://en.wikipedia.org/wiki/Falsifiability


The scientific method in statistical language

1 Ask a question
2 Obtain relevant data.
3 Write a null and alternative hypothesis to represent your

question in a probability model. This may involve writing a linear
model so that β1 = 0 corresponds to the null hypothesis of “no
effect” and β1 6= 0 is a discovered “effect.”

4 Choose a test statistic. The sample test statistic is a quantity
computed using the data summarizing the evidence against the null
hypothesis. For our linear model example, the least squares coefficient
b1 is a natural sample test statistic for the hypothesis β1 = 0.

5 Calculate the p-value, the probability that a model-generated test
statistic is at least as extreme as that observed. For our linear model
example, the p-value is P

(
|β̂1| > |b1|

)
. We can find this probability,

when β1 = 0, using a normal approximation.
6 Conclusions. A small p-value (often, < 0.05) is evidence favoring

rejection of the null hypothesis. The data analysis may suggest new
questions: Return to Step 1.
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Using confidence intervals to construct a hypothesis test

• It is often convenient to use the confidence interval as a sample test
statistic.

• If the confidence interval doesn’t cover the null hypothesis, then we have
evidence to reject that null hypothesis.

• If we do this test using a 95% confidence interval, we have a 5% chance
that we reject the null hypothesis if it is true. This follows from the
definition of a confidence interval: whatever the true unknown value of a
parameter θ, a model-generated confidence interval covers θ with
probability 0.95.
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Some notation for hypothesis tests

• The null hypothesis is H0 and the alternative is Ha.

• We write t for the sample test statistic calculated using the data y. We
write T for the model-generated test statistic, which is a random variable
constructed by calculating the test statistic using a random vector Y
drawn from the probability model under H0.

• The p-value is pval = P
(
|T | ≥ |t|

)
. Here, we are assuming “extreme”

means “large in magnitude.” Occasionally, it may make more sense to use
pval = P

(
T ≥ t

)
.

• We reject H0 at significance level α if pval < α. Common choices of α
are α = 0.05, α = 0.01, α = 0.001.
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Alternative ways to report a hypothesis test

Question 6.4. When we report the results of a hypothesis test, we can
either (i) give the p-value, or (ii) say whether H0 is rejected at a particular
significance level. What are the advantages and disadvantages of each?
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Terminology for test statistics

• Recall that a sample test statistic is a summary of the data,
constructed to test a hypothesis.

• A model-generated test statistic is the same summary applied to
random variables drawn from a probability model. Usually, this probability
model represents the null hypothesis. We can say “model-generated test
statistic under H0” to make this explicit.

• Distinguishing between sample test statistics and model-generated ones
under a null hypothesis is critical to the logic of hypothesis testing.

Example: testing whether β1 = 0 in the linear model Y = Xβ + ε,

• The sample test statistic is b1 =
[(
XtX

)−1Xty
]
1
.

• A model-generated test statistic is β̂1 =
[(
XtX

)−1XtY
]
1
.



A hypothesis test for unemployment and mortality

Question 6.5. Write a formal hypothesis test of the null hypothesis that
there is no association between unemployment and mortality. Compute a
p-value using a normal approximation. What do you think is an appropriate
significance level α for deciding whether to reject the null hypothesis?
Steps: (1) write the probability model; (2) write the null
hypothesis; (3) specify your test statistic; (4) find the distribution
of the test statistic under the null hypothesis; (5) calculate the
p-value; (6) draw conclusions.
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A hypothesis test: continued
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Normal approximations versus Student’s t distribution

• Notice that summary(lm(...)) gives tvalue and Pr(>|t|).

• The tvalue is the estimated coefficient divided by its standard error.
This measures how many standard error units the estimated coefficient is
from zero.

• Pr(>|t|) is similar, but slightly larger, than the p-value coming from
the normal approximation.

• R is using Student’s t distribution, which makes allowance for chance
variation from using s as an approximation to σ when we compute the
standard error.

• R uses a t random variable to model the distribution of the statistic t.
Giving the full name (Student’s t distribution) may add clarity.

• With sophisticated statistical methods, it is often hard to see if they
work well just by reading about them. Fortunately, it is often relatively
easy to do a simulation study to see what is going on.

summary(lm(...))
t value
Pr(>|t|)
t value
Pr(>|t|)


Simulating from Student’s t distribution

• Suppose X and X1, . . . , Xd are independent identially distributed (iid)
normal random variables with mean zero and standard deviation σ.

• Student’s t distribution on d degrees of freedom is defined to be the

distribution of T = X/σ̂ where σ̂ =
√

1
d

∑d
i=1X

2
i .

• A normal approximation would say T is approximately normal(0, 1) since
σ̂ is an estimate of σ.

• With a computer, we can simulate T many times, plot a histogram, and
compare it to the probability density function of the normal distribution
and Student’s t distribution.

Question 6.6. This is almost the same representation of the t distribution
as HW4. What is the difference? Why does it not matter?
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• Here is a different way from HW4 to do the simulation experiment.

• We start by simulating a matrix X of iid normal random variables.

N <- 50000 ; sigma <- 1 ; d <- 10 ; set.seed(23)

X <- matrix(rnorm(N*(d+1),mean=0,sd=sigma),nrow=N)

• Now, we write a function that computes T given X1, . . . , Xd, X

T_evaluator <- function(x) x[d+1] / sqrt(sum(x[1:d]^2)/d)

• Then, use apply() to evaluate T on each row of ‘X‘.

Tsim <- apply(X,1,T_evaluator)

• We add the normal and t densities to a histogram of the simulations.

hist(Tsim,freq=F,main="",

breaks=30,ylim=c(0,0.4))

x <- seq(length=200,

min(Tsim),max(Tsim))

lines(x,dnorm(x),

col="blue",

lty="dashed")

lines(x,dt(x,df=d),

col="red")

X
apply()
Edward



Comparing the normal and t distributions

• Even with as few as d = 10 degees of freedom to estimate σ, the
Student’s t density looks similar to the normal density.

• Student’s t has fatter tails. This is important for the probability of rare
extreme outcomes.

• Here, the largest and smallest of the N = 5× 104 simulations are

range(Tsim)

## [1] -6.438830 6.480262

• Let’s check the chance of an outcome more than 5 (or 6) standard
deviations from the mean for the normal distribution and the t on 10
degrees of freedom.

2*(1-pnorm(5))

## [1] 5.733031e-07

2*(1-pnorm(6))

## [1] 1.973175e-09

2*(1-pt(5,df=d))

## [1] 0.0005373336

2*(1-pt(6,df=d))

## [1] 0.0001321089



Hypotheses about predictions from a linear model

• Consider the sample linear model y = Xb+ e, where X = [xij ]n×p.

• We might be interested in predicting outcomes at some new set of
explanatory variables x∗ = (x∗1, . . . , x

∗
p), treated as a 1× p row vector.

• Making a prediction involves estimating (i) the expected value of a new
outcome; (ii) its variability. In addition, we must make allowance for the
statistical uncertainty in these estimates.

• To do inference, we need a probability model. As usual, consider
Y = Xβ + ε where ε1, . . . , εn ∼ iid normal(0, σ). Also, model a new
measurement at x∗ as

Y ∗ = x∗β + ε∗

where ε∗ is another independent draw from the measurement model.

Question 6.7. (a) Why do we want x∗ to be a row vector not a column
vector? (b) What is the dimension of x∗β?
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The expected value of a new outcome and its uncertainty

• According to the model, the expected value of a new outcome at x∗ is

E[Y ∗] = x∗β.

• But, we don’t know β. We estimate β by the sample least squares
coefficient b =

(
XtX

)−1Xty, which is modeled as a realization of the

model-generated least squares coefficient β̂ =
(
XtX

)−1XtY.

• A sample estimate of the expected value is the fitted value at x∗

ŷ∗ = x∗b =
∑p

j=1 x
∗
jbj .

• The model-generated estimate of the expected value is

Ŷ ∗ = x∗β̂ =
∑p

j=1 x
∗
j β̂j .

• We can find the mean and variance of Ŷ ∗. We can use these (together
with a normal approximation) to find a confidence interval for E[Y ∗]. If
the model is reasonable, this will tell us the uncertainty in using ŷ∗ to
estimate the sample average of many new outcomes collected at x∗.
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Question 6.8. Use linearity of expectation to show that E[Ŷ ∗] = x∗β

Question 6.9. Use the formula Var(AX) = AVar(X)At to show that

Var[Ŷ ∗] = σ2x∗(XtX
)−1

x∗t

Question 6.10. Check the dimension of Var[Ŷ ∗]. Is this correct?
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A CI for the expected value of a new outcome

• We can get a confidence interval (CI) for the linear combination of
coefficients x∗β in a similar way to what we did for a single coefficient.

• A standard error is SE(x∗b) = s
√

x∗
(
XtX

)−1
x∗t.

• Then, making a normal approximation, a 95% CI is
[x∗b− 1.96 SE(x∗b) , x∗b+ 1.96 SE(x∗b)].

Example. We consider again the data on freshman GPA, ACT exam
scores and percentile ranking of each student within their high school for
705 students at a large state university. We seek to predict using the
probability model considered in the midterm exam, where freshman GPA is
modeled to depend linearly on ACT score and high school ranking.

gpa <- read.table("gpa.txt",header=T); gpa[1,]

## ID GPA High_School ACT Year

## 1 1 0.98 61 20 1996



Worked example 6.1. Find a 95% confidence interval for the expected
freshman GPA among students with an ACT score of 20 ranking at the
40th percentile in his/her high school.

lm1 <- lm(GPA~ACT+High_School,data=gpa)

x <- c(1,20,40)

pred <- x%*%coef(lm1)

V <- summary(lm1)$cov.unscaled

s <- summary(lm1)$sigma

SE_pred <-sqrt(x%*%V%*%x)*s

c <- qnorm(0.975)

cat("CI = [", round(pred-c*SE_pred,3),

",", round(pred+c*SE_pred,3), "]")

## CI = [ 2.344 , 2.532 ]

Question 6.11. How would you check whether your answer is plausible?
How would you check the R calculation has done what you want it to do?
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A prediction interval for a new outcome

• A 95% prediction interval for a new outcome of a linear model with
explanatory variables x∗ covers the outcome with probability 95%.

• The prediction interval allows for the uncertainty around the mean,
modeled as measurement error in the outcome.

• The prediction interval aims to cover Y ∗ = x∗β + ε∗ whereas the
confidence interval for the mean only aims to cover E[Y ∗] = x∗β.

• Since ε∗ is independent of x∗β̂ we have

Var[Y ∗ − x∗β̂] = Var[Y ∗ − x∗β] + Var[x∗β − x∗β̂]

= σ2 + σ2x∗(XtX
)−1

x∗t

• This suggests using a standard error for prediction of

SEpred = s

√
1 + x∗

(
XtX

)−1
x∗t

• A 95% prediction interval, using a normal approximation, is

[x∗b− 1.96 SEpred , x
∗b+ 1.96 SEpred]

.
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Using the t distribution for predictions

• We could use a t quantile instead of a normal approximation.

• Just as for parameter confidence intervals, since we use the sample
standard deviation s in place of the true standard deviation σ, a t
distribution is more accurate.

• With 705 observations, the normal quantile 1.96=qnorm(0.975) is
identical to 1.96=qt(0.975,df=702) up to 3 significant figures.

1.96=qnorm(0.975)
1.96=qt(0.975,df=702)
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plot(x=fitted.values(lm1),y=gpa$GPA,ylab="GPA")

abline(a=0,b=1)

Question 6.12. Is the linear model a good fit for the data? What
cautions do you recommend when using this model for prediction?
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Worked example 6.2. Find a 95% prediction interval for the freshman
GPA of an incoming student with an ACT score of 20 ranking at the 40th
percentile in his/her high school.

lm1 <- lm(GPA~ACT+High_School,data=gpa)

x <- c(1,20,40)

pred <- x%*%coef(lm1)

V <- summary(lm1)$cov.unscaled

s <- summary(lm1)$sigma

SE_pred <-sqrt(x%*%V%*%x + 1)*s

c <- qnorm(0.975)

cat("prediction interval = [", round(pred-c*SE_pred,3),

",", round(pred+c*SE_pred,3), "]")

## prediction interval = [ 1.322 , 3.553 ]

Question 6.13. Where does this calculation differ from the confidence
interval for the expected value?
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