Chapter 6. Confidence intervals and hypothesis testing

- An interval [u, v] constructed using the data **y** is said to **cover** a parameter θ if $u \le \theta \le v$.
- [u, v] is a 95% **confidence interval** (CI) for θ if the same construction, applied to a large number of draws from the model, would cover θ 95% of the time.
- A parameter is a name for any unknown constant in a model. In linear models, each component β_1, \ldots, β_p of the **coefficient vector** β is a parameter. The only other parameter is σ , the standard deviation of the measurement error.

- A confidence interval is the usual way to represent the amount of uncertainty in an estimated parameter.
- The parameter is not random. According to the model, it has a fixed but unknown value.
- The observed interval [u, v] is also not random.
- An interval [U, V] constructed using a vector of random variables **Y** defined in a probability model is random. $(\mathcal{P}, \mathcal{V})$ and **V** are random variables **Y** defined in a probability model is random.
- If the model is appropriate, then it is reasonable to treat the observed confidence interval [u, v] like a realization from the probability model.
- Call LU,V] the sample confidence interval and [U,V] is a model-operated confidence interval

Not quite a confidence interval for a linear model

- Consider estimating β_1 in the linear model $\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ with $\epsilon \sim MVN(\mathbf{0}, \sigma^2 \mathbb{I}).$ $\beta = (\chi^T \chi)^T \chi^T \gamma$, a random variable. • Recall that $E[\hat{\beta}_1] = \beta_1$ and $SD(\hat{\beta}_1) = \sigma \sqrt{\left[\left(\mathbb{X}^T \mathbb{X}\right)^{-1}\right]_{11}}$. His looks where: $E[\hat{\beta}_1] = \beta_1$ and $SD(\hat{\beta}_1) = \sigma \sqrt{\left[\left(\mathbb{X}^T \mathbb{X}\right)^{-1}\right]_{11}}$. His looks (lie a CI Question 6.1. Find $P(\hat{\beta}_1 - 1.96 SD(\hat{\beta}_1) \le \beta_1 \le \hat{\beta}_1 + 1.96 SD(\hat{\beta}_1))$ Recall that $\hat{\beta}_1$ has a normal distribution. Notice that the event $\{\hat{\beta}_1 - 1 \cdot 16 \quad \text{SD}(\hat{\beta}_1) \leq \beta_1 \leq \hat{\beta}_1 \neq 1 \cdot 96 \quad \text{SD}(\hat{\beta}_2) \}$ is the same as $\{\beta_i - 1.96 \text{ SD}(\beta_i)\} \leq \beta_i \leq \beta_i + 1.96 \text{ SD}(\beta_i)\}$ this defines a to see they are the some, and subtract region for β_i . β_i and β_i from both sides than multiply. Thinking in standard write, $P\left[\beta_{1}-1,9\delta'SD(\hat{\beta}_{1}) \leq \hat{\beta}_{1} \leq \frac{1000}{1000}\beta_{1}+1,9\delta'SD(\hat{\beta}_{1})\right]$
 - The interval $\left[\hat{\beta}_1 1.96 \operatorname{SD}(\hat{\beta}_1), \hat{\beta}_1 + 1.96 \operatorname{SD}(\hat{\beta}_1)\right]$ is almost a standard confidence interval. Sadly, we don't know σ .

An approximate confidence interval for a linear model

Interpreting and criticizing a produce

Question 6.2. We appear to have found evidence that each percentage point of unemployment above trend is associated with about 0.13 years of additional life expectancy, since the 95% CI doesn't include zero. Do you believe this discovery? How could you criticize it?

A CI depends on a probability model. Any assumption in the probability model can be guestioned to bring the CI into dispute. Assumptions: errors are independent random variables; relationship is linear. In equation form,

 $\left[\begin{array}{cc} \text{Assumption} & \tilde{\chi} = \tilde{\chi} \beta + \tilde{\xi}, \quad \tilde{\xi} \sim MVN/2, \quad \sigma^2 I \right]$

The assumption is that we can treat the data as being generated by the probability model. We can think about checking this assumption Even if the model is a good "Exogeneity": "Confounding" statistical explanation of the econometrics statistics term

data, we must be cautions about causal interpretations "Whatever phenomenon varies in any manner whenever another. phenomenon varies in some particular manner, is either a cause or an effect of that phenomenon, or is connected with it through some fact of causation." (John Stuart Mill, A System of Logic, Vol. 1. 1843. p. 470. beyond Clasmande statistical doubt

Association

- Put differently: If A and B are associated statistically, we can infer that either A causes B, or B causes A, or both have some common cause C.
- A useful mantra: Association is not causation.
- Writing a linear model where A depends on B can show association but we need extra work to argue B causes A. We need to rule out A causing B and the possibility of any common cause C.

Association is not causation: a case study

Question 6.3. Discuss the extent to which the observed association between detrended unemployment and life expectancy in our data can and cannot be interpreted causally.

Unemployment is one of many variables cycling in the boom/bust cycles. We could add more variables (?) But, if we add many variables it will be hard to distinguish statistically which ones are most relevant. If we think of unemployment as a measure of the economic cycle, an argument "economic cycle courses life expectancy fluctuations" seens stranger. Is there any plausible variable that explains both the boom/bust cycles and life expectancy fluctuations?

- We try to see patterns in our data. We hope to discover phenomena that will advance science, or help the environment, or reduce sickness and poverty, or make us rich, ...
- How can we tell whether our new theory is like seeing animals or faces in the clouds?
- From Wikipedia: "**Pareidolia** is a psychological phenomenon in which the mind responds to a stimulus ... by perceiving a familiar pattern where none exists (e.g. in random data)".
- The research community has set a standard: The evidence presented to support a new theory should be unlikely under a **null hypothesis** that the new theory is false. To quantify *unlikely* we need a probability model.

- From a different perspective, a standard view of scientific progress holds that scientific theories cannot be proved correct, they can only be falsified (https://en.wikipedia.org/wiki/Falsifiability).
- Accordingly, scientists look for evidence to refute the **null hypothesis** that data can be explained by current scientific understanding.
- If the null hypothesis is inadequate to explain data, the scientist may propose an **alternative hypothesis** which better explains these data.
- The alternative hypothesis will subsequently be challenged with new data.

The scientific method in statistical language

- Ask a question
- Obtain relevant data.
- Write a null and alternative hypothesis to represent your question in a probability model. This may involve writing a linear model so that β₁ = 0 corresponds to the null hypothesis of "no effect" and β₁ ≠ 0 is a discovered "effect."
- Choose a test statistic. The sample test statistic is a quantity computed using the data summarizing the evidence against the null hypothesis. For our linear model example, the least squares coefficient b₁ is a natural sample test statistic for the hypothesis β₁ = 0.
- Calculate the p-value, the probability that a model-generated test statistic is at least as extreme as that observed. For our linear model example, the p-value is P(|β₁| > |b₁|). We can find this probability, when β₁ = 0, using a normal approximation.
- Conclusions. A small p-value (often, < 0.05) is evidence favoring rejection of the null hypothesis. The data analysis may suggest new questions: Return to Step 1.

- It is often convenient to use the confidence interval as a sample test statistic, to construct a hypothesis test.
- If the confidence interval doesn't cover the null hypothesis, then we have evidence to reject that null hypothesis.
- If we do this test using a 95% confidence interval, we have a 5% chance that we reject the null hypothesis if it is true. This follows from the definition of a confidence interval: whatever the true unknown value of a parameter θ , a model-generated confidence interval covers θ with probability 0.95. $P[CI covers \theta, when \theta_0 is free] = 0.95$

Some notation for hypothesis tests

- We write t for the sample test statistic calculated using the data \mathbf{y} . We write T for the model-generated test statistic, which is a random variable constructed by calculating the test statistic using a random vector \mathbf{Y} drawn from the probability model under H_0 . It is a conduct
- drawn from the probability model under H_0 . It is a constant • The p-value is $pval = P(|T| \ge |t|)$. Here, we are assuming "extreme" means "large in magnitude." Occasionally, it may make more sense to use $pval = P(T \ge t)$.

Alternative ways to report a hypothesis test

Question 6.4. When we report the results of a hypothesis test, we can either (i) give the p-value, or (ii) say whether H_0 is rejected at a particular significance level. What are the advantages and disadvantages of each? Give both! It is almost always good to report the p-value. (i) Is better if you may want to keep analyzing the data - you can test agein later at any level you wart. (ii) The significance level alove is More compart.
People sometimes write * for significant at 0.05,
** for significant at 0.01, *** significant at 0.001,
When you make a lot of tests, this is convenient, t significant at 0.1 (iii) p-value alone doesn't reach a conclusion, the test level adds interpretation. 0.05 is the most usual level required for scientific publication. In fields where lots of data are available, stronger oridere is required.

- Recall that a **sample test statistic** is a summary of the data, constructed to test a hypothesis.
- A model-generated test statistic is the same summary applied to random variables drawn from a probability model. Usually, this probability model represents the null hypothesis. We can say "model-generated test statistic under H_0 " to make this explicit.
- Distinguishing between sample test statistics and model-generated ones under a null hypothesis is critical to the logic of hypothesis testing.

Example: testing whether $\beta_1 = 0$ in the linear model $\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$,

- The sample test statistic is $b_1 = [(\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T \mathbf{y}]_1$.
- A model-generated test statistic is $\hat{\beta}_1 = \left[\left(\mathbb{X}^T \mathbb{X} \right)^{-1} \mathbb{X}^T \mathbf{Y} \right]_1$.

A hypothesis test for unemployment and mortality

Question 6.5. Write a formal hypothesis test of the null hypothesis that there is no association between unemployment and mortality. Compute a p-value using a normal approximation. What do you think is an appropriate significance level α for deciding whether to reject the null hypothesis? Steps: (1) write the probability model; (2) write the null hypothesis; (3) specify your test statistic; (4) find the distribution of the test statistic under the null hypothesis; (5) calculate the p-value; (6) draw conclusions. 1. Probability Model in subscript form: $Y_{i} = \beta_{i} x_{i} + \beta_{2} + \varepsilon_{i}$ for i=1,., n with n= 68 where x: is descended onemployment for the ith year and $\varepsilon_i \sim id normal(0, \sigma)$. Bi and β_2 are interiment anstants. Y: is a probability model for $X = \frac{1}{2}$ the data y:, the detended life expectancy for $X = \frac{1}{2}$ $\mathbf{X} = \begin{bmatrix} \mathcal{X}_1 & \mathbf{1} \\ \vdots & \vdots \\ \vdots & \vdots \end{bmatrix}$ the it year. 2. Null hypothesis: Ho: B,=O, so any observed association between unemployment and life expectancy is just chance variation. tor simple

A hypothesis test: continued

 Test statistic. We use b, the sample least squares note: regression coefficient.
 Under the null hypothesis, β, ~ normal (O, SD(β.)) depend on he value of β.
 Since B = O under the . If this doesn't
 Under the null hypothesis, β, ~ normal (O, SD(β.)) depend on he value of β. σ, we use instead $SE(b_1) = S\sqrt{[(X^TX)⁻¹]_1}$ (Recall Var(β)) 5. From the R ontput above, /= 5²(***) $b_1 = 0 \cdot [3]$ SE(b,)= 0.063 z-test: mean = 0, z-test: z = 0.063) z = 0.0376. 0.131 6. A significance level of 0.05 is typical for this kind of social science data. We can't collect more data - there are only So many recessions to look at. We reject the null, Ho.

Normal approximations versus Student's t distribution

- Notice that summary(lm(...)) gives tvalue and Pr(>|t|).
- The tvalue is the estimated coefficient divided by its standard error. This measures how many standard error units the estimated coefficient is from zero.
- Pr(>|t|) is similar, but slightly larger, than the p-value coming from the normal approximation.
- R is using Student's t distribution, which makes allowance for chance variation from using s as an approximation to σ when we compute the standard error.
- R uses a t random variable to model the distribution of the statistic *t*. Giving the full name (Student's t distribution) may add clarity.
- With sophisticated statistical methods, it is often hard to see if they work well just by reading about them. Fortunately, it is often relatively easy to do a **simulation study** to see what is going on.

Simulating from Student's t distribution

- Suppose X and X_1, \ldots, X_d are independent identially distributed (iid) normal random variables with mean zero and standard deviation σ .
- Student's t distribution on d degrees of freedom is defined to be the distribution of $\underline{T = X/\hat{\sigma}}$ where $\hat{\sigma} = \sqrt{\frac{1}{d}\sum_{i=1}^{d}X_{i}^{2}}$.
- A normal approximation would say T is approximately $\operatorname{normal}(0,1)$ since $\hat{\sigma}$ is an estimate of σ .
- With a computer, we can simulate T many times, plot a histogram, and compare it to the probability density function of the normal distribution and Student's t distribution.

Question 6.6. This is almost the same representation of the t distribution as HW4. What is the difference? Why does it not matter? (n + W4, we simulated T = Y, $Y_{Z_1, ..., Z_n}$, $Y_{Z_1, ...$

() rescales the numerator of () by the (interioren) J, So both are equal.

- Here is a different way from HW4 to do the simulation experiment.
- We start by simulating a matrix X of iid normal random variables.
 - N <- 50000 ; sigma <- 1 ; d <- 10 ; set.seed(23) X <- matrix(rnorm(N*(d+1),mean=0,sd=sigma),nrow=N)
- Now, we write a function that computes T given X_1, \ldots, X_d, X $T_{evaluator} <- function(x) x[d+1] / sqrt(sum(x[1:d]^2)/d)$
- Then, use apply() to evaluate T on each row of 'X'. Tsim <- apply(X,1,T_evaluator)

 Tsim <- apply(X,1,T_evaluator)

 Tsim <- apply(X,1,T_evaluator)

• We add the normal and t densities to a histogram of the simulations.

```
0.4
hist(Tsim,freq=F,main="",
  breaks=30, ylim=c(0, 0.4)
                                        0.3
x \leftarrow seq(length=200,
                                    Density
                                        0.2
  min(Tsim),max(Tsim))
lines(x,dnorm(x),
                                        0.1
  col="blue",
  lty="dashed")
                                        0.0
lines(x,dt(x,df=d),
  col="red")
                                                                 2
                                                                          6
```

Comparing the normal and t distributions

- Even with as few as d = 10 degrees of freedom to estimate σ , the Student's t density looks similar to the normal density.
- Student's t has fatter tails. This is important for the probability of rare extreme outcomes.
- Here, the largest and smallest of the $N=5\times10^4$ simulations are range(Tsim) ## [1] -6.438830 6.480262
- Let's check the chance of an outcome more than 5 (or 6) standard deviations from the mean for the normal distribution and the t on 10 degrees of freedom.

```
2*(1-pnorm(5))
## [1] 5.733031e-07
2*(1-pnorm(6))
## [1] 1.973175e-09
```

2*(1-pt(5,df=d))
[1] 0.0005373336
2*(1-pt(6,df=d))
[1] 0.0001321089

Hypotheses about predictions from a linear model

- Consider the sample linear model $\mathbf{y} = \mathbb{X}\mathbf{b} + \mathbf{e}$, where $\mathbb{X} = [x_{ij}]_{n \times p}$.
- We might be interested in predicting outcomes at some new set of explanatory variables $\mathbf{x}^* = (x_1^*, \dots, x_p^*)$, treated as a $1 \times p$ row vector.
- Making a prediction involves estimating (i) the expected value of a new outcome; (ii) its variability. In addition, we must make allowance for the statistical uncertainty in these estimates.
- To do inference, we need a probability model. As usual, consider $\mathbf{Y} = \mathbb{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ where $\epsilon_1, \ldots, \epsilon_n \sim \mathrm{iid} \operatorname{normal}(0, \sigma)$. Also, model a new measurement at \mathbf{x}^* as

$$Y^* = \mathbf{x}^* \boldsymbol{\beta} + \boldsymbol{\epsilon}^*$$

where ϵ^* is another independent draw from the measurement model. **Question 6.7**. (a) Why do we want \mathbf{x}^* to be a row vector not a column vector? (b) What is the dimension of $\mathbf{x}^*\beta$? We have already decided β is a column vector. Then, ∞^* must be a row vector to make $\mathbf{x}^*\beta$, a scalar $\mathbf{x}^*\beta$ $\mathbf{x}^*\beta$

The expected value of a new outcome and its uncertainty

- But, we don't know β . We estimate β by the sample least squares coefficient $\mathbf{b} = (X^T X)^{-1} X^T \mathbf{y}$, which is modeled as a realization of the
- model-generated least squares coefficient $\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$. A sample estimate of the expected value is the fitted value at \mathbf{x}^* \hat{y}^* depends $\hat{y}_{1,\dots,\hat{y}_n}$ but not on \hat{y}^* , which has $\hat{y}^* = \mathbf{x}^* \mathbf{b} = \sum_{j=1}^p x_j^* b_j$. For depending on not been collected yet. • The model-generated estimate of the expected value is

$$\hat{Y}^* = \mathbf{x}^* \hat{\boldsymbol{\beta}} = \sum_{j=1}^p x_j^* \hat{\beta}_j$$
. In the results on hypothesis cal random draws from the result

• We can find the mean and variance of \hat{Y}^* . We can use these (together with a normal approximation) to find a confidence interval for $E[Y^*]$. If the model is reasonable, this will tell us the uncertainty in using \hat{y}^* to estimate the sample average of many new outcomes collected at \mathbf{x}^* .

Q68. Use linearity of expectation to shav
Huat
$$E[(9^+)^* \mathfrak{X}^* \mathfrak{K}]$$
.
 $E[(9^+)^* \mathfrak{X}^* \mathfrak{K}] = \mathfrak{X}^* E[\mathfrak{K}] = \mathfrak{X}^* \mathfrak{K}$
 $P^{\text{revisually}}$
 $e_{\alpha}[\alpha_{\alpha}] = \mathfrak{X}^* \mathfrak{K}$
Question 6.9. Use the formula $Var(AX) = AVar(X)A^T$ to show that
 $Var[\hat{Y}^*] = \sigma^2 x^* (X^TX)^{-1} x^{*T}$
 $Var(\hat{Y}^*) = Var(\mathfrak{X}^* \mathfrak{K}) = \mathfrak{X}^* Var(\mathfrak{K}) \mathfrak{X}^{*T}$
 $Var(\hat{Y}^*) = Var(\mathfrak{X}^* \mathfrak{K}) = \mathfrak{X}^* Var(\mathfrak{K}) \mathfrak{X}^{*T}$
 $Var(\hat{Y}^*) = Var(\mathfrak{X}^* \mathfrak{K}) = \mathfrak{X}^* (\mathfrak{K}^T \mathfrak{K})^{-1} \mathfrak{X}^{*T}$
 $Var(\hat{Y}^*) = \nabla^2 \mathfrak{X}^* (\mathfrak{K}^T \mathfrak{K})^{-1} \mathfrak{X}^{*T}$
 $Var(\hat{Y}^*) = \nabla^2 \mathfrak{X}^* (\mathfrak{K}^T \mathfrak{K})^{-1} \mathfrak{X}^{*T}$
 $Var(\hat{Y}^*) = \mathfrak{X}^* (\mathfrak{K}^T \mathfrak{K})^{-1} \mathfrak{X}^{*T}$
 $Var(\hat{Y}^*) = \mathfrak{X}^* (\mathfrak{K}^* \mathfrak{K})^{-1} \mathfrak{X}^{*T}$
 $\mathcal{X}^* (\mathfrak{K}^*) = \mathfrak{X}^* (\mathfrak{K}^* \mathfrak{K})^{-1} \mathfrak{X}^{*T}$
 $\mathcal{X}^* (\mathfrak{K}^*) = \mathfrak{X}^* (\mathfrak{K}^* \mathfrak{K})^{-1} \mathfrak{X}^{*T}$
 $\mathcal{X}^* (\mathfrak{K}^*) = \mathfrak{X}^* (\mathfrak{K}^*) \mathfrak{K}^*$
 $\mathcal{X}^* (\mathfrak{K}^*) = \mathfrak{K}^* (\mathfrak{K}$

A CI for the expected value of a new outcome

- We can get a confidence interval (CI) for the linear combination of coefficients x^{*}β in a similar way to what we did for a single coefficient.
- A standard error is $SE(\mathbf{x}^*\mathbf{b}) = s \sqrt{\mathbf{x}^* (\mathbb{X}^T \mathbb{X})^{-1} \mathbf{x}^{*T}}$.
- Then, making a normal approximation, a 95% CI is $[\mathbf{x}^*\mathbf{b} 1.96 \operatorname{SE}(\mathbf{x}^*\mathbf{b}), \mathbf{x}^*\mathbf{b} + 1.96 \operatorname{SE}(\mathbf{x}^*\mathbf{b})].$

Example. We consider again the data on freshman GPA, ACT exam scores and percentile ranking of each student within their high school for 705 students at a large state university. We seek to predict using the probability model considered in the midterm exam, where freshman GPA is modeled to depend linearly on ACT score and high school ranking.

```
gpa <- read.table("gpa.txt",header=T); gpa[1,]
## ID GPA High_School ACT Year
## 1 1 0.98 61 20 1996</pre>
```

Worked example 6.1. Find a 95% confidence interval for the expected freshman GPA among students with an ACT score of 20 ranking at the Vu 40th percentile in his/her high school. lm1 <- lm(GPA~ACT+High_School,data=gpa)</pre> what is the order of the x <- c(1,20,40) coefficients in this model? pred <- x**%***%coef(lm1) we need to use the same. V <- summary(lm1)\$cov.unscaled other for x here. s <- summary(lm1)\$sigma</pre> C.g. summary (m1) names (m1\$ coef) SE_pred <-sqrt(x%*%V%*%x)*s c <- qnorm(0.975)cat("CI = [", round(pred-c*SE_pred,3), model. matix ((m1) ",", round(pred+c*SE_pred,3), "]") we had that the 1st coefficient is called "(intercept). ## CI = [2.344, 2.532] This needs a value of I, since xt is like a **Question 6.11**. How would you check whether your answer is plausible? How would you check the R calculation has done what you want it to do? Sarrity check: it should be between I and 4. now from in the Santy check: the predicted value should be in the design matrix. ok at the data

A prediction interval for a new outcome

- A 95% prediction interval for a new outcome of a linear model with explanatory variables x* covers the outcome with probability 95%.
- The prediction interval allows for the uncertainty around the mean, modeled as **measurement error** in the outcome.
- The prediction interval aims to cover $Y^* = \mathbf{x}^* \boldsymbol{\beta} + \boldsymbol{\epsilon}^*$ whereas the confidence interval for the mean only aims to cover $\overline{E}[Y^*] = \mathbf{x}^* \boldsymbol{\beta}$.
- Since ϵ^* is independent of $\mathbf{x}^*\hat{\boldsymbol{\beta}}$ we have $\gamma^*-\boldsymbol{x}^*\hat{\boldsymbol{\beta}}^*= \gamma^*-\boldsymbol{x}^*\boldsymbol{\beta} + \boldsymbol{x}^*\boldsymbol{\beta} \boldsymbol{x}^*\hat{\boldsymbol{\beta}}$
- Since ϵ^* is independent of $\mathbf{x} \cdot \boldsymbol{p}$ we have $Var[Y^* \mathbf{x}^* \hat{\boldsymbol{\beta}}] = Var[Y^* \mathbf{x}^* \boldsymbol{\beta}] + Var[\mathbf{x}^* \boldsymbol{\beta} \mathbf{x}^* \hat{\boldsymbol{\beta}}]$ Remain $\mathbf{a} = \sigma^2 + \sigma^2 \mathbf{x}^* (\mathbb{X}^T \mathbb{X})^{-1} \mathbf{x}^{*T}$ This suggests using a standard error for prediction of $Var(\mathbf{x}^* \boldsymbol{\beta} \mathbf{x}^*)$ $\sum_{s=1}^{s} \sqrt{1 + \mathbf{x}^{*} (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{x}^{*T}} = \operatorname{Vas}(\mathbf{z}^{*} \mathbf{\hat{\beta}})$
- A 95% prediction interval, using a normal approximation, is two independent terms, the new measurement entry a $\mathbf{[x^*b-1.96 SE_{pred}, x^*b+1.96 SE_{pred}]}$

- We could use a t quantile instead of a normal approximation.
- Just as for parameter confidence intervals, since we use the sample standard deviation s in place of the true standard deviation σ , a t distribution is more accurate.
- With 705 observations, the normal quantile 1.96=qnorm(0.975) is identical to 1.96=qt(0.975,df=702) up to 3 significant figures.

3 promotors in the model 705 datapoints 702 residual degrees of freedom.

Worked example 6.2. Find a 95% prediction interval for the freshman GPA of an incoming student with an ACT score of 20 ranking at the 40th percentile in his/her high school.