
Chapter 7. Factors and the ANOVA F-test

• A factor is an explanatory variable with discrete levels.

• Factors are also called categorical variables.

• The different values the variable can take are called levels of the factor.

• If we tested growth of a plant in three different soil types we might
model this using a soil type factor with 3 levels, clay, sand and loam.

• A factor with 2 levels is a binary factor.

• In linear models, factors can describe different classes of units. For
example, in HW7, the binary factor Competition distinguishes certain
types of newspaper.

• We could have a different mean and/or different slope for each level of
the factor.
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Comparing two sample means via a model with a factor

• Recall the mouse weight experiment. 24 mice are randomized to one of
two diets and are weighed after two weeks.

• First, set up notation. Let yij be the weight of the jth mouse on
treatment i, where i = 1, 2 corresponds to the normal and high fat diet
respectively and j = 1, . . . , 12 enumerates the replicates for each
treatment group.

• A probability model for this experiment is

Yij = µi + εij for i = 1, 2 and j = 1, . . . , 12

where εij ∼ iid normal(0, σ).

• Here, we have written the model in double subscript form. We have a
mean for each level of the treatment group factor.

• This looks superficially different from the way we have written linear
models. There is an extra subscript.

• We can rewrite it to make it fit into our linear model framework by
putting all the (i, j) values in a single column.



Dummy variables to code levels of factors

• Let x1 = (x1,1, . . . , x24,1) = (1, . . . , 1, 0, . . . , 0) be a vector with 1 in the
first 12 places and 0 in the remaining 12 places.

• Let x2 = (x1,2, . . . , x24,2) = (0, . . . , 0, 1, . . . , 1) be a vector with 0 in the
first 12 places and 1 in the remaining 12 places.

• Let y = (y1, . . . , y24) = (y1,1, . . . , y1,12, y2,1, . . . , y2,12) be the mouse
weights concatenated into a single vector.

• Let e = (e1, . . . , e24) = (e1,1, . . . , e1,12, e2,1, . . . , e2,12) be residual error
terms concatenated into a single vector.

Question 7.1. x1 and x1 are called dummy variables since they are built
to allow us to write yij = mi + eij in the usual single-subscript linear
model form,

yk = m1xk,1 +m2xk,2 + ek.

Convince yourself that these equations are equivalent.



Two things to notice about models with factors

We consider the sample linear model yk = m1xk,1 +m2xk,2 + ek,
k = 1, . . . , 24.

Question 7.2. Usually we use i as a subscript when writing a linear model
in subscript form. Why do we use k here?

Question 7.3. Notice there is no intercept term in this linear model.
Why?



Question 7.4. Write the probability model Yij = µi + εij for i = 1, 2 and
j = 1, . . . , 12 in the matrix form for the probability model of a linear
model, Y = Xβ + ε.

This asks you to write down a choice of Y, X, β and ε so that the two
equations are equivalent.



Alternative representations of factors

• Consider the following two models in double subscript form, with
εij ∼ iid normal(0, σ) for i = 1, 2 and j = 1, . . . , 12.

(M1). Yij = µi + εij

(M2). Yij = µ+ αi + εij with α1 = 0

Question 7.5. Why are (M1) and (M2) equivalent?

Question 7.6. What is the difference in the interpretation of the
parameters between (M1) and (M2)?



An over-specified model

• Recall (M2) with εij ∼ iid normal(0, σ) for i = 1, 2 and j = 1, . . . , 12.

(M2). Yij = µ+ αi + εij with α1 = 0

• Suppose we modify model (M2) to omit the important detail that
α1 = 0. This gives

(M3). Yij = µ+ αi + εij

• Many rude words are used to describe the problem with (M3) such as
over-specified, over-parameterized, unidentifiable, redundant.

Question 7.7. Can you see and explain the concern about (M3)?



Using a linear model with factors to test equality of means

• A null hypothesis is that the mice weights for both treatment groups are
drawn from the same distribution. Any difference is just chance variation
in this particular sample. If the null hypothesis is a plausible description
of our data, we don’t want to spent too much time interpreting this
experimental results.

• A natural way to write this null hypothesis is H0 : µ1 = µ2 in the model
representation (M1)

• A USEFUL TRICK. Using the equivalent model representation (M2),
this becomes H0 : α = 0 which is the easiest type of null hypothesis for a
linear model.



Factors in lm()

• If you give lm() an explanatory variable of class character it interprets
the variable as levels of a factor.

mice <- read.csv(

"https://ionides.github.io/401f18/hw/hw01/femaleMiceWeights.csv"

)

head(mice,3)

## Diet Bodyweight

## 1 chow 21.51

## 2 chow 28.14

## 3 chow 24.04

lm1 <- lm(Bodyweight~Diet,data=mice)

summary(lm1)$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 23.813333 1.039353 22.911684 7.642256e-17

## Diethf 3.020833 1.469867 2.055174 5.192480e-02

lm()
lm()
character


What model has R actually fitted?

• It can be hard to figure out what R is actually doing when it fits models
with a factor.

• If you can’t correctly write the model R is fitting using subscript
notation you may well interpret the results wrong.

• A good check is to look at R’s design matrix

model.matrix(lm1)[c(1:2,12:13,23:24),]

## (Intercept) Diethf

## 1 1 0

## 2 1 0

## 12 1 0

## 13 1 1

## 23 1 1

## 24 1 1



## (Intercept) Diethf

## 1 1 0

## 2 1 0

## 3 1 0

Question 7.8. Write down the sample model R has fitted, in double
subscript form, and interpret the parameters.



summary(lm1)$coef

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 23.813333 1.039353 22.911684 7.642256e-17

## Diethf 3.020833 1.469867 2.055174 5.192480e-02

Question 7.9. Consider the null hypothesis that the two diets are
equivalent, so the observed difference in mouse weights is chance variation
in the sample. Make both a t-test and a normal approximation test (also
known as a z-test) of this hypothesis. Which test do you prefer, and why?
A test at the 5% level is appropriate for this fairly small sample.



A linear model vs a two sample test

• The linear model test above is equivalent to a two sample t-test with
pooled variance.

t.test(mice$Bodyweight[1:12],mice$Bodyweight[13:24],

var.equal=TRUE)

##

## Two Sample t-test

##

## data: mice$Bodyweight[1:12] and mice$Bodyweight[13:24]

## t = -2.0552, df = 22, p-value = 0.05192

## alternative hypothesis: true difference in means is not equal to 0

## 95 percent confidence interval:

## -6.06915183 0.02748516

## sample estimates:

## mean of x mean of y

## 23.81333 26.83417

• Check that the p-values are the same in both cases.



Why does the above linear model test match the two
sample t-test with pooled variance?

• Tests are the same if they use the same probability model for the null
hypothesis and an equivalent test statistic.

• If you wrote out the probability model justifying the two sample t-test
with pooled variance it would be exactly the model (M1) or (M2).

• Here we focus on tests via a linear model, but you might like to review
two sample tests at https://open.umich.edu/find/
open-educational-resources/statistics/

statistics-250-introduction-statistics-data-analysis

• Your previous course in statistics likely did not explain the probability
model behind the two sample t-test with pooled variance. Viewing this
test as a special case of the linear model gives us a way to do that.

• The linear model also lets us analyze many more complex models.

https://open.umich.edu/find/open-educational-resources/statistics/statistics-250-introduction-statistics-data-analysis
https://open.umich.edu/find/open-educational-resources/statistics/statistics-250-introduction-statistics-data-analysis
https://open.umich.edu/find/open-educational-resources/statistics/statistics-250-introduction-statistics-data-analysis


A factor with many levels: Kicking field goals

• If an athlete has a good season, is the next one likely to be good? Or
bad? Or does the previous season have no predictive skill?

• We consider field goal kicking success for the 19 National Football
League (NFL) kickers who played every season during 2002-2006.

download.file(destfile="FieldGoals.csv",

url="https://ionides.github.io/401f18/07/FieldGoals.csv")

goals <- read.table("FieldGoals.csv",header=TRUE,sep=",")

head(goals[,1:8])

## Name Yeart Teamt FGAt FGt Teamt1 FGAt1 FGt1

## 1 Adam Vinatieri 2003 NE 34 73.5 NE 30 90.0

## 2 Adam Vinatieri 2004 NE 33 93.9 NE 34 73.5

## 3 Adam Vinatieri 2005 NE 25 80.0 NE 33 93.9

## 4 Adam Vinatieri 2006 IND 19 89.4 NE 25 80.0

## 5 David Akers 2003 PHI 29 82.7 PHI 34 88.2

## 6 David Akers 2004 PHI 32 84.3 PHI 29 82.7



Understanding the field goal data

goals[1,1:8]

## Name Yeart Teamt FGAt FGt Teamt1 FGAt1 FGt1

## 1 Adam Vinatieri 2003 NE 34 73.5 NE 30 90

• Each record has the player Name and Year followed by
Teamt: team that year.
FGAt: number of field goal attempts in that year.
FGt: percentage of field goal attempts which were successful that year.
Teamt1: Team the previous year.
FGAt1 and FGt1: Field goal attempts and percentage the previous year.

Question 7.10. Is there additional background on football that we need
to understand the data and the question?

Name
Year
Teamt
FGAt
FGt
Teamt1
FGAt1
FGt1


Brainstorming for a model

• If an NFL kicker has a good season, is the next one likely to be good?
Or bad? Or does the previous season have no predictive skill?

Question 7.11. (1) Set up notation; (2) propose models in the context of
our data; (3) write down hypotheses relevant to our question.



Brainstorming continued



A linear model for field goals

goals.lm <- lm(FGt~FGt1+Name,data=goals)

X <- model.matrix(goals.lm)

• Here, Name has R class factor. The levels are the kicker names.

class(goals$Name)

## [1] "factor"

attributes(goals$Name)$levels[1:6]

## [1] "Adam Vinatieri" "David Akers" "Jason Elam"

## [4] "Jason Hanson" "Jay Feely" "Jeff Reed"

• We want to find out what model we have fitted! Time to study the
design matrix, X.

dim(X)

## [1] 76 20

• Working out the model (in double-subscript form) corresponding to a
76× 20 matrix takes some thought.

Name
factor
X


unname(X[1:15,1:10])

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

## [1,] 1 90.0 0 0 0 0 0 0 0 0

## [2,] 1 73.5 0 0 0 0 0 0 0 0

## [3,] 1 93.9 0 0 0 0 0 0 0 0

## [4,] 1 80.0 0 0 0 0 0 0 0 0

## [5,] 1 88.2 1 0 0 0 0 0 0 0

## [6,] 1 82.7 1 0 0 0 0 0 0 0

## [7,] 1 84.3 1 0 0 0 0 0 0 0

## [8,] 1 72.7 1 0 0 0 0 0 0 0

## [9,] 1 72.2 0 1 0 0 0 0 0 0

## [10,] 1 87.0 0 1 0 0 0 0 0 0

## [11,] 1 85.2 0 1 0 0 0 0 0 0

## [12,] 1 75.0 0 1 0 0 0 0 0 0

## [13,] 1 82.1 0 0 1 0 0 0 0 0

## [14,] 1 95.6 0 0 1 0 0 0 0 0

## [15,] 1 85.7 0 0 1 0 0 0 0 0



Question 7.12. What is the probability model fitted by
lm(FGt~FGt1+Name,data=goals)? Use double-subscript form.

lm(FGt~FGt1+Name,data=goals)


Question 7.13. What are the terms in the sample linear model
corresponding to the following R output?

coef(goals.lm)[1:6]

## (Intercept) FGt1 NameDavid Akers

## 126.6871588 -0.5037008 -4.6462893

## NameJason Elam NameJason Hanson NameJay Feely

## -3.0166534 2.1172185 -10.3736848

Question 7.14. Is there anything surprising about these results?



Plotting the fitted model with a line for each factor level

plot(FGt~FGt1,data=goals)

intercept <- coef(goals.lm)[1]

slope <- coef(goals.lm)[2]

kicker <- coef(goals.lm)[3:20]

abline(a=intercept,b=slope)

for(i in 1:18) abline(a=intercept+kicker[i],b=slope)



Hypothesis tests for groups of parameters

• We’ve seen how the least squares coefficient can be used as a test
statistic for the null hypothesis that a parameter in a linear model is zero.

• Sometimes we want to test many parameters at the same time. For
example, when analyzing the field goal kicking data, we must decide
whether to have a separate intercept for each player.

Question 7.15. There are 19 kickers in the dataset. How many extra
parameters are needed if we add an intercept for each player?

• This type of question is called model selection. Our test statistic should
compare goodness of fit with and without the additional parameters.

• We need to know the distribution of the model-generated test statistic
under the null hypothesis to find the p-value for the test.



Residual sum of squares to quantify goodness of fit

Let y be the data. Let H0 be a linear model, Y = Xβ + ε. Let Ha extend
H0 by adding d additional explanatory variables.
• Let RSS0 be the residual sum of squares for H0. The residual errors are
e = y − Xb where b =

(
XtX

)−1Xty. So, RSS0 =
∑n

i=1 e
2
i .

• Let RSSa be the residual sum of squares for Ha.

• Residual sum of squares is a measure of goodness of fit. A small residual
sum of squares suggests a model that fits the data well.

Question 7.16. It is always true that RSSa ≤ RSS0. Why?

• We want to know how much smaller RSSa has to be than RSS0 to give
satisfactory evidence in support of adding the extra explanatory variables
into our model. In other words, when should we reject H0 in favor of Ha?



The f statistic for adding groups of parameters

Formally, we have H0 : Y = Xβ + ε and Ha : Y = Xaβa + ε, where X is
an n× p matrix and Xa = [X Z ] is an n× q matrix with q = p+ d. Here,
Z is a n× d matrix of additional explanatory variables for Ha. As usual,
we model ε1, . . . , εn as iid N [0, σ].
• Consider the following sample test statistic:

f =
(RSS0 − RSSa)/d

RSSa/(n− q)
.

• The denominator is an estimate of σ2 under Ha. Using this denominator
standardizes the test statistic.

• The numerator (RSS0 − RSSa)/d is the change in RSS per degree of
freedom. Parameters in linear models are often interpreted as degrees of
freedom of the model.

• Let F be a model-generated version of f , with the data y replaced by a
random vector Y. If H0 is true, then the RSS per degree of freedom
should be about the same on the numerator and the denominator, so
F ≈ 1. Large values, f � 1, are therefore evidence against H0.



The F test for model selection

• Under H0, the model-generated F statistic has an F distribution on d
and n− q degrees of freedom.

• Because of the way we constructed the F statistic, its distribution under
H0 doesn’t depend on σ. It only depends on the dimension of X and Xa.

• We can obtain p-values for the F distribution in R using pf(). Try ?pf.

• Testing H0 versus Ha using this p-value is called the F test.

• Degrees of freedom are mysterious. The mathematics for how they work
involves matrix algebra beyond this course. An intuition is that fitting a
parameter that is not in the model “explains” a share of the residual sum
of squares; in an extreme case, fitting n parameters to n data points may
give a perfect fit (residual sum of squares = zero) even if none of these
parameters are in the true model.

pf()
?pf


The F test is called “analysis of variance”

• The F test was invented before computers existed.

• Working out the sums of squares efficiently, by hand, was a big deal!

• Sums of squares of residuals are relevant for estimating variance.

• Building F tests is historically called analysis of variance or abbreviated
to ANOVA.

• The sums of squares and corresponding F tests are presented in an
ANOVA table. We will see one in the following data analysis.



An F test for kickers: Interpreting the ANOVA table

anova(goals.lm)

## Analysis of Variance Table

##

## Response: FGt

## Df Sum Sq Mean Sq F value Pr(>F)

## FGt1 1 87.2 87.199 2.2597 0.1383978

## Name 18 2252.5 125.137 3.2429 0.0003858 ***

## Residuals 56 2161.0 38.589

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Question 7.17. Focus on the row labeled Name. Explain what is being
tested, how it is being tested, and what you conclude. In other words,
write out the hypothesis test corresponding to this line.

Name


ANOVA hypothesis test, continued


