
8. Model diagnostics

• We know how to estimate parameters and make hypothesis tests for
linear models.

• We know how to make predictions, with uncertainty estimates, using
linear models.

1 What if our conclusions depend on our choice of model?
2 What if our model is a poor description of the data?
3 What if a much better model exists?
4 What if the model describes some parts of the data okay, but not

other parts?

• How can we answer these questions?

1 Graphical investigations. Make informative plots.
2 Quantitative investigations. Make relevant statistical tests, or

calculate other interpretable statistics.



Looking for patterns in the residuals

• Recall that the residuals for a linear model are e1, . . . , en in the linear
model y = Xb+ e.

• Residuals estimate the measurement errors ε1, . . . , εn in the probability
model Y = Xβ + ε.

• b is a noisy estimate of β, meaning that we cannot find β exactly due
to measurement error. Similarly, e is a noisy estimate of ε.

• The specification that ε1, . . . , εn ∼ iid normal(0, σ) implies the
measurement errors have no pattern.

• Any pattern, or association with some other variable, that we can find in
the residuals contradicts the model and could lead to improvements.

• The search for patterns in the residuals can take creativity and
persistence.



Residuals for time series data

• A fairly common type of data has points collected through time. This
type of data is called a time series.

• For example, the annual data we investigated on unemployment and life
expectancy are both time series.

• Time series might be expected to have measurements at points close in
time that are more similar than those distant in time. If this is true of
residuals, the pattern is inconsistent with the iid measurement error
model.



Question 8.1. How can we look for temporal patterns in the residuals?
Think of (at least) two plots to make.



Residuals for unemployment vs life expectancy

• Recall the linear model relating life expectancy to unemployment:

U <- read.table(file="unemployment.csv",sep=",",header=TRUE)

U_annual <- apply(U[,2:13],1,mean)

U_detrended <- lm(U_annual~U$Year)$residuals

L <- read.table(file="life_expectancy.txt",header=TRUE)

L <- subset(L,L$Year %in% U$Year)

L_fit <- lm(Total~Year,data=L)

L_detrended <- L_fit$residuals

lm1 <- lm(L_detrended~U_detrended)

• One way to see if the residuals have statistically noticeable dependence
is to fit a linear model to the residuals e1:n of the form

ei = bei−1 + hi, for i = 2, 3, . . . , n,

where hi is the residual error when ei−1 is used to predict ei.

Question 8.2. Why do we not need an intercept here?



Question 8.3. How would you fit the linear model

ei = bei−1 + hi, for i = 2, 3, . . . , n,

for the residuals from lm1<-lm(L_detrended~U_detrended) in R?

lm1 <- lm(L_detrended~U_detrended)


n <- length(resid(lm1))

e <- resid(lm1)[2:n]

lag_e <- resid(lm1)[1:(n-1)] # NOTE WE NEED 1:(n-1) NOT 1:n-1

lm2 <- lm(e~lag_e-1)

head(model.matrix(lm2),3)

## lag_e

## 17 0.8556642

## 18 0.7466793

## 19 1.0556704

summary(lm2)$coef

## Estimate Std. Error t value Pr(>|t|)

## lag_e 0.9898371 0.03167559 31.24921 2.834997e-41

Question 8.4. What do you conclude from this analysis?



plot(U$Year,resid(lm1)) plot(lag_e,e)

Question 8.5. What do you these plots tell you about (i) the least
squares estimate of the association between changes of life expectancy and
unemployment; (ii) its standard error and confidence interval?



Rescuing the life expectancy/unemployment analysis

• We have found a serious problem with our linear model analysis.

• From a statistically significant coefficient, we inferred counter-intuitively
that higher unemployment is associated with above-trend life expectancy.

• A p-value is only as good as the probability model producing it.

• We have found that the probability model we used is seriously defective.
It is based on assumptions that are substantially violated.

• This doesn’t necessarily mean that the result is right or wrong.

• It means we haven’t yet found a good argument either way.

• This topic is of current interest:
https://www.nytimes.com/2017/10/16/upshot/

how-a-healthy-economy-can-shorten-life-spans.html

Question 8.6. Can we do a better data analysis? How?

https://www.nytimes.com/2017/10/16/upshot/how-a-healthy-economy-can-shorten-life-spans.html
https://www.nytimes.com/2017/10/16/upshot/how-a-healthy-economy-can-shorten-life-spans.html


Outliers

• Sometimes one, or a few, points are inconsistent with a model that
explains the rest of the data nicely.

• These points are called outliers.

• Our first responsibility is to notice them.

• Our second responsibility is to work out whether they affect the
conclusions of the analysis. If they don’t, the issue becomes unimportant.

Question 8.7. It is tempting to remove clear outliers from the data
analysis on the assumption that they are errors. When is that reasonable?
When is it a bad decision?



Outliers and responsible scientific conduct

• Falsification is the manipulation of research materials, equipment, or
processes or changing or omitting data or results such that the research is
not accurately represented in the research record
(https://en.wikipedia.org/wiki/Scientific_misconduct).

Question 8.8. How could inappropriate treatment of outliers lead to
charges of falsification? What can a careful data analyst do to avoid that?

https://en.wikipedia.org/wiki/Scientific_misconduct


Leverage and influence

• A data point has high leverage if its explanatory variables are distant
from much of the rest of the data, so the point plays a relatively large
role in determining the fitted values.

• Leverage of a point i depends only on the design matrix X = [xij ]n×p,
and primarily on xi1, . . . , xip.

• A point has high influence if removing that point leads to large changes
in the parameter estimates and fitted values.

• Influence depends on both X and y.

• An outlier with high leverage is a point of very high influence.



Question 8.9. Sketch a scatterplot (i.e., a plot of y against a single
explanatory vector x) that has a point of high leverage, but not high
influence.



Question 8.10. Sketch a scatterplot that has a point of high leverage
which is also a point of high influence.



Question 8.11. Sketch a scatterplot that has an outlier which is not
influential.



Practical strategies for influence and leverage

• A small collection of points with unusual and extreme values of the
explanatory variables will likely have high leverage and may also have high
influence.

• Try removing these points to see if that changes the conclusions of your
data analysis. If it does, then hard thought is required.

• A measure of influence is Cook’s distance, which is computed for a
model lm1 by cooks.distance(lm1).

• We are not going to study Cook’s distance carefully. You can investigate
the points which have the highest Cook’s distance. For example, you can
see the effect of removing these points on your conclusions.

lm1
cooks.distance(lm1)


Normality

• A histogram of the residuals assesses the normal measurement error
model.

• If the number of points is fairly large (say, more than 30) the estimates
of the coefficients in the linear model have a central limit theorem.

• Recall that a basic central limit theorem says that the average of many
independent identically distributed (iid) random variables approximately
follows a normal distribution.

• The least squares estimates of coefficients can be thought of as a kind of
averaging of the data. This argument suggests (correctly!) that the
distribution of these estimates should also follows a central limit theorem.

• Measurement error with very long tails may lead to observations that
look like outliers. They may also behave like outliers, and potentially have
high influence.

• Usually, because of the central limit theorem, normality of errors is not
especially important. It is more important for prediction intervals.



Non-constant variance

• Our usual probability model assumes (in addition to normality and
independence) that the measurement errors have constant variance.

• Plotting the residuals (say, against fitted values or against time or
against some other variable) may show that the spread of the residuals is
larger in some places than others.

• Taking the logarithm of non-negative data help surprisingly often in this
case: assess this by looking for football-shaped scatterplots on the log
scale.

• Other approaches to deal with this problem are beyond this course,
though you now have the necessary background to learn and use these
methods. These involve models with a different measurement model from
the constant variance model ε1, . . . , εn ∼ iid normal(0, σ).


