Stats 401 Lab 2

Sanjana Gupta

9/7/2018

Office hours

- Dr. Ionides. Mon 10-11am, Wed 3-4pm (his office)

At 2165 USB, the Science Learning Center Annex

- Sanjana Gupta. Mon 4:30-5:30pm, Tu 11:30am-12:30pm
- Ed Wu. Tu 12:30-2:30pm
- Naomi Giertych. Thu 9-11 am

Homework

- Out of 10 points
- 0 points if there is no statement of sources
- Provide the code if the question requests

Swirl tutorial

We finished lessons 1/3/4 in HW1.

- Any techical difficulties encountered working with swirl?
- Any questions about materials introduced in the tutorial?

Swirl tutorial

You are asked to complete lessons 5/6/7/9 for HW2. Lesson 9 can be a little bit harder.

- We can go through parts of it together at the end of this lab (if we have time).
- You can always go to our office hours for help.

Topics covered in today's Lab

- R functions
- R help: '?'
- Apply function: 'apply()'
- Summation notation

R functions: help

- Access the documentation of functions by typing '?name of function'.
- Try '?mean', '?median'.
- What if you don't know the name of the inbuilt function? Try '??name of concept.
- Try '??columnnames', '??dimension'

R functions: Apply

- Applies a given function to a vector or rows/ columns of a matrix.
- See documentation by typing '?apply'

Let's see an example: Find the average GPA and ACT scores of the students from the dataset used in the last lab.

```
# Load the Dataset
gpa = read.table("CH01PR19.txt", header = T)
# Recall the dataset
#head(gpa)
# Find the mean of the columns
apply(gpa,2,mean)
## GPA ACT
## 3.07405 24.72500
```


Summation

This is simply a compressed form of writing addition of many terms.
Given n constants $x_{1}, x_{2}, . ., x_{m}, x_{m+1}, . ., x_{n}$,

$$
\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+\ldots+x_{n-1}+x_{n}
$$

In general,

$$
\sum_{i=m}^{n} x_{i}=x_{m}+x_{m+1}+\ldots+x_{n-1}+x_{n}
$$

Summation: Examples

$$
\begin{aligned}
& \sum_{i=1}^{6} i=1+2+3+4+5+6=21 \\
& \sum_{i=3}^{5} i^{2}=3^{2}+4^{2}+5^{2}=9+16+25=50 \\
& \sum_{i=1}^{9} 1=\underbrace{1+1+\ldots .+1}_{9 \text { times }}=9 \\
- & \text { If } x_{1}=11, x_{2}=22, x_{3}=21, x_{4}=12 \\
& \sum_{i=1}^{4} x_{i}=x_{1}+x_{2}+x_{3}+x_{4}=11+22+21+12=66
\end{aligned}
$$

Note: Comparing to basic summation formula on prev slide, $x_{i}=i$ in example $1, x_{i}=i^{2}$ in example $2, x_{i}=1$ in example 3

Summation: Basic Properties

For any given (fixed) numbers n, m and constants c, d
Basic addition

- $\sum_{i=1}^{n} 1=\underbrace{1+1+\ldots+1}_{\text {ntimes }}=n \times 1=n$
- $\sum_{i=1}^{n} d=\underbrace{d+d+\ldots+d}_{\text {ntimes }}=n \times d$
- $\sum_{i=m}^{n} 1=\underbrace{1+1+\ldots .+1}_{n-m+1 \text { times }}=(n-m+1) \times 1=n-m+1$
$>\sum_{i=m}^{n} d=\underbrace{d+d+\ldots+d}_{n-m+1 \text { times }}=(n-m+1) \times d=(n-m+1) d$
Addition of summations
- $\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} y_{i}=\sum_{i=1}^{n}\left(x_{i}+y_{i}\right)$
- $\sum_{i=1}^{4}\left(i+i^{2}\right)=\sum_{i=1}^{4} i+\sum_{i=1}^{4} i^{2}=10+30=40$

Summation: Basic Properties (ctd)

Scalar multiplication

$$
\begin{aligned}
c\left(\sum_{i=1}^{n} x_{i}\right) & =c\left(x_{1}+x_{2}+\ldots+x_{n-1}+x_{n}\right) \\
& =c x_{1}+c x_{2}+\ldots+c x_{n-1}+c x_{n} \\
& =\sum_{i=1}^{n} c\left(x_{i}\right)
\end{aligned}
$$

- $5 \sum_{i=1}^{3} i=5(1+2+3)=5 \times 1+5 \times 2+5 \times 3=\sum_{i=1}^{3} 5 i$

Summation: Relating to linear model

Recall LM1, LM2 from ch1 notes:
Suppose our data are $\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$ and on each unit $\{i\}$ we have $\{\mathrm{p}\}$ explanatory variables $\left\{x_{i 1}, x_{i 2}, \ldots, x_{i p}\right\}$. A linear model is for $i=1,2, \ldots, n$

$$
\begin{equation*}
y_{i}=b_{1} x_{i 1}+b_{2} x_{i 2}+\cdots+b_{p} x_{i p}+e_{i} \tag{LM1}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
y_{i}=\sum_{j=1}^{p} x_{i j} b_{j}+e_{i} \tag{LM2}
\end{equation*}
$$

In-lab Activity

- Find the median GPA and ACT scores of the students from the dataset used in lab1 (CH01PR19.txt)
- Express the mean of $x_{1}, x_{2}, \ldots, x_{n}$ in summation notation. (Hint: Recall that mean $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}$)

In-lab Activity Part 1

- Let us find the median GPA and ACT scores of the students.

```
# Find the median scores
apply(gpa,2,median)
```

\#\#	GPA	ACT
\#\#	3.0775	25.0000

In-lab Activity Part 2

- Express mean in terms of summation

$$
\begin{aligned}
\operatorname{mean}\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} \\
& =\sum_{i=1}^{n}\left(x_{i}\right) / n \\
& =\frac{1}{n} \sum_{i=1}^{n} x_{i}
\end{aligned}
$$

Exit ticket

- Load the unemployment dataset from https://ionides.github.io/401f18/01/unemployment.csv
- See the first few observations using the head() command
- Find the average unemployment rate for each month (use apply and mean function)
- Recall the definition of standard deviation. Find the inbuild function in R for standard deviation (using the help function '??')
- Using this, find the standard deviation of the unemployment rate for each month

