Stats 401 Lab 3

Ed Wu

9/21/2018

Announcements

- Homework 2 is due today
- Homework without a "Sources" section will receive a zero
- Make sure to staple your homework
- Quiz 1 is on October 5

Basic matrix computation

- Addition
- Scalar multiplication
- Matrix multiplication
- Inverse
- Transpose

Addition

- We can add two matrices by adding them together element-wise
- Let $\mathbb{A}=\left[a_{i j}\right]_{n \times p}$ and $\mathbb{B}=\left[b_{i j}\right]_{n \times p}$, then $\mathbb{A}+\mathbb{B}=\left[a_{i j}+b_{i j}\right]_{n \times p}$

For example,

$$
\mathbb{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

and

$$
\mathbb{B}=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]
$$

Then

$$
\mathbb{A}+\mathbb{B}=\left[\begin{array}{ll}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22}
\end{array}\right]
$$

Addition

\# generate matrices A and B
$\mathrm{A}=$ matrix $(\mathrm{c}(3,-2,-1,4,1,2)$, nrow=2); A

\#\#		$[, 1]$	$[, 2]$	$[, 3]$
\#\#	$[1]$,	3	-1	1
\#\#	$[2]$,	-2	4	2

$B=$ matrix (1:6, nrow=2); B

| \#\# | $[, 1]$ | $[, 2]$ | $[, 3]$ |
| ---: | ---: | ---: | ---: | ---: |
| \#\# $[1]$, | 1 | 3 | 5 |
| \#\# $[2]$, | 2 | 4 | 6 |

$A+B$
\#\# [,1] [,2] [,3]
\#\# [1,] 4 2 6
\#\# [2, $] \quad 0 \quad 8 \quad 8$

Scalar multiplication

- We can multiply a scalar and a matrix together by multiplying each element of the matrix by the scalar
- Let $\mathbb{A}=\left[a_{i j}\right]_{n \times p}$ and s be a scalar. Then $s \mathbb{A}=\left[s a_{i j}\right]_{n \times p}$

For example,

$$
\mathbb{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

Then

$$
s \mathbb{A}=\left[\begin{array}{ll}
s a_{11} & s a_{12} \\
s a_{21} & s a_{22}
\end{array}\right]
$$

Scalar multiplication

\# Use same matrix A
A

```
## [,1] [,2] [,3]
## [1,] 3 -1 1
## [2,] -2 4 2
# 5 times A
5 * A
```

\#\# [,1] [,2] [,3]

\#\# [1,]	15	-5	5
\#\# [2,]	-10	20	10

Transpose

- We can transpose a matrix by writing its rows as columns (or columns as rows)
- If $\mathbb{A}=\left[a_{i j}\right]_{n \times p}$, then $\mathbb{A}^{\top}=\left[a_{j i}\right]_{p \times n}$

For example,

$$
\mathbb{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

Then

$$
\mathbb{A}^{\top}=\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right]
$$

Transpose

We can transpose in R using the function t()
\# Recall we have matrix A
A

```
## [,1] [,2] [,3]
## [1,] 3 -1 1
## [2,] -2 4
# A transpose
C = t(A);C
```

\#\#	$[, 1]$	$[, 2]$
\#\# [1,]	3	-2
\#\# [2,]	-1	4
\#\# [3,]	1	2

Matrix multiplication

- While matrix addition and scalar multiplication behave as we might expect (element-wise), matrix multiplication is a bit different
- Matrix multiplication does not commute:

$$
\mathbb{A} \mathbb{B} \neq \mathbb{B} \mathbb{A}
$$

- We can multiply matrices together if the number of columns of the left matrix equals the number of rows of the right matrix

Matrix multiplication

If $\mathbb{A}=\left[a_{i j}\right]_{n \times p}$ and $\mathbb{B}=\left[b_{i j}\right]_{p \times q}$, then $\mathbb{A} \mathbb{B}=\left[c_{i j}\right]_{n \times q}$ where $c_{i j}=\sum_{k=1}^{p} a_{i k} b_{k j}$

For example,

$$
\mathbb{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

and

$$
\mathbb{B}=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]
$$

Then

$$
\mathbb{A} \mathbb{B}=\left[\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}
\end{array}\right]
$$

Matrix multiplication

```
# Recall we have matrix B and C
B
\begin{tabular}{lrrr} 
\#\# & {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
\#\# [1,] & 1 & 3 & 5 \\
\#\# [2,] & 2 & 4 & 6
\end{tabular}
C
```

\#\#	$[, 1]$	$[, 2]$
\#\# [1,]	3	-2
\#\# [2,]	-1	4
\#\# [3,]	1	2

Let's calculate BC by hand

Matrix multiplication

Matrix multiplication is performed in R with the command $\% * \%$

```
# Check with R
B %*% C
```

\#\#	$[, 1]$	$[, 2]$
\#\# [1,]	5	20
\#\# [2,]	8	24

\# notice that matrix multiplication is not commutative
C \% * \% B

\#\#	$[, 1]$	$[, 2]$	$[, 3]$
\#\# [1,]	-1	1	3
\#\# [2,]	7	13	19
\#\# [3,]	5	11	17

Identity matrix

- The $n \times n$ identity matrix is the $n \times n$ matrix with 1 's on the diagonal and zeros elsewhere. For example, the 2×2 identity matrix is given by

$$
\mathbb{I}_{2 \times 2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- The identity matrix plays the same role as the value 1 does in scalar multiplication. Multiplying a matrix by the identity matrix (of the appropriate dimension) returns the same matrix. For example, if \mathbb{A} is an $n \times 2$ matrix

$$
\mathbb{A}_{n \times 2} \mathbb{I}_{2 \times 2}=\mathbb{A}_{n \times 2}
$$

Matrix inverse

- The scalar a has an inverse $a^{-1}=\frac{1}{a}$ because $a \times a^{-1}=1$
- For a matrix \mathbb{A}, we call \mathbb{A}^{-1} the inverse of A if $\mathbb{A}^{-1}=\mathbb{I}$

Matrix inverse

For a 2×2 matrix, we have the following formula for the inverse. Suppose

$$
\mathbb{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

Then

$$
\mathbb{A}^{-1}=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
$$

$-\operatorname{det}(\mathbb{A})=a_{11} a_{22}-a_{12} a_{21}$ is called the determinant of \mathbb{A}

- If $\operatorname{det}(\mathbb{A})=0$, then \mathbb{A} is not invertible

Matrix inverse

We can invert matrices in R using the solve() function
\# Generate a matrix
D = matrix (c (1,1,1,3,2,1,3,2,2), nrow=3);D

\#\#	$[, 1]$	$[, 2]$	$[, 3]$
\#\# [1,]	1	3	3
\#\# [2,]	1	2	2
\#\# [3,]	1	1	2

\# Obtain the inverse of D
solve(D)

\#\#	$[, 1]$	$[, 2]$	$[, 3]$
\#\# [1,]	-2	3	0
\#\# [2,]	0	1	-1
\#\# [3,]	1	-2	1

The Linear Model

Suppose we have collected our response variable $y_{1}, y_{2}, \ldots, y_{n}$ and for each unit i, we have p explanatory variables $x_{i 1}, x_{i 2}, \ldots, x_{i p}$. We can write out the linear model using subscript notation:

$$
\begin{gather*}
y_{1}=b_{1} x_{11}+b_{2} x_{12}+\cdots+b_{p} x_{1 p}+e_{1} \\
y_{2}=b_{1} x_{21}+b_{2} x_{22}+\cdots+b_{p} x_{2 p}+e_{2} \\
\vdots \tag{LM1}\\
y_{n}=b_{1} x_{n 1}+b_{2} x_{n 2}+\cdots+b_{p} x_{n p}+e_{n}
\end{gather*}
$$

The linear model using matrix notation

- The linear model can also be written in matrix notation
- Define the (column) vectors $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, $\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$, and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{p}\right)$
- Let the matrix of explanator variables be

$$
\mathbb{X}=\left[x_{i j}\right]_{n \times p}=\left[\begin{array}{cccc}
\mid & \mid & \ldots & \mid \\
\mathbf{x}_{1} & \mathbf{x}_{2} & \ldots & \mathbf{x}_{p} \\
\mid & \mid & \ldots & \mid
\end{array}\right]
$$

where each \mathbf{x}_{j} is the column vector $\left(x_{1 j}, x_{2 j} \ldots, x_{n j}\right)$ corresponding to the j-th variable

The linear model using matrix notation

From class, we know that LM1 is equivalent to

$$
\mathbf{y}=\mathbb{X} \mathbf{b}+\mathbf{e}
$$

We consider the right hand side first:

$$
\mathbb{X} \mathbf{b}+\mathbf{e}=\left[\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 p} \\
x_{21} & x_{22} & \ldots & x_{2 p} \\
\vdots & \vdots & & \vdots \\
x_{n 1} & x_{n 2} & \ldots & x_{n p}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{p}
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right]
$$

The linear model using matrix notation

From class, we know that LM1 is equivalent to

$$
\mathbf{y}=\mathbb{X} \mathbf{b}+\mathbf{e}
$$

We consider the right hand side first:

$$
\mathbb{X} \mathbf{b}+\mathbf{e}=\left[\begin{array}{c}
b_{1} x_{11}+b_{2} x_{12}+\cdots+b_{p} x_{1 p} \\
b_{1} x_{21}+b_{2} x_{22}+\cdots+b_{p} x_{2 p} \\
\vdots \\
b_{1} x_{n 1}+b_{2} x_{n 2}+\cdots+b_{p} x_{n p}
\end{array}\right]+\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right]
$$

The linear model using matrix notation

From class, we know that LM1 is equivalent to

$$
\mathbf{y}=\mathbb{X} \mathbf{b}+\mathbf{e}
$$

We consider the right hand side first:

$$
\mathbb{X} \mathbf{b}+\mathbf{e}=\left[\begin{array}{c}
b_{1} x_{11}+b_{2} x_{12}+\cdots+b_{p} x_{1 p}+e_{1} \\
b_{1} x_{21}+b_{2} x_{22}+\cdots+b_{p} x_{2 p}+e_{2} \\
\vdots \\
b_{1} x_{n 1}+b_{2} x_{n 2}+\cdots+b_{p} x_{n p}+e_{n}
\end{array}\right]
$$

The linear model using matrix notation

We therefore see that $\mathbf{y}=\mathbb{X} \mathbf{b}+\mathbf{e}$ is equivalent to LM1:

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} x_{11}+b_{2} x_{12}+\cdots+b_{p} x_{1 p}+e_{1} \\
b_{1} x_{21}+b_{2} x_{22}+\cdots+b_{p} x_{2 p}+e_{2} \\
\vdots \\
b_{1} x_{n 1}+b_{2} x_{n 2}+\cdots+b_{p} x_{n p}+e_{n}
\end{array}\right]
$$

The linear model using matrix notation

Often, we include an intercept term in the model
Suppose we have $p-1$ predictors. Then we can write $\mathbf{x}_{p}=(1, \ldots, 1)$ and the resulting linear model will be:

$$
\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} x_{11}+b_{2} x_{12}+\cdots+b_{p-1} x_{1, p-1}+b_{p}+e_{1} \\
b_{1} x_{21}+b_{2} x_{22}+\cdots+b_{p-1} x_{2, p-1}+b_{p}+e_{2} \\
\vdots \\
b_{1} x_{n 1}+b_{2} x_{n 2}+\cdots+b_{p-1} x_{n, p-1}+b_{p}+e_{n}
\end{array}\right]
$$

In-lab activity (part 1)

Suppose we collect data on 5 students. We have the response variable final project score $\mathbf{y}=(90,65,69,79,85)$, exam 1 score $(87,86,73,65,90)$, exam 2 score $(100,70,76,76,90)$

1. Write out the matrix of the explanatory variables assuming the linear model (a) does not contain an intercept and (b) does contain an intercept
2. Write the same matrices in R. Call the version without an intercept "exams" and the version with an intercept " X "

In-lab activity (part 1)

1(a)
$\left[\begin{array}{ll}87 & 100 \\ 86 & 70 \\ 73 & 76 \\ 65 & 76 \\ 90 & 90\end{array}\right]$

1(b)
$\left[\begin{array}{lll}87 & 100 & 1 \\ 86 & 70 & 1 \\ 73 & 76 & 1 \\ 65 & 76 & 1 \\ 90 & 90 & 1\end{array}\right]$

In-lab activity (part 1)

Question 2
exams $=$ matrix $(c(87,86,73,65,90,100,70,76,76,90)$,nrow $=5)$ exams

\#\#	[, 1]	$[, 2]$
\#\# [1,]	87	100
\#\# [2,]	86	70
\#\# [3,]	73	76
\#\# [4,]	65	76
\#\# [5,]	90	90

In-lab activity (part 1)

Question 2
$X=$ cbind (exams,rep $(1,5))$
X

\#\#	[, 1]	[, 2]	$[, 3]$
\#\# [1,]	87	100	1
\#\# [2,]	86	70	1
\#\# [3,]	73	76	1
\#\# [4,]	65	76	1
\#\# [5,]	90	90	1

Linear model in R

We use the lm () command to create a linear model in R.
First, create the explanatory variable:

$$
\text { project }=c(90,65,69,79,85)
$$

Linear model in R

Next, fit the linear model
lmod1 $=\operatorname{lm}$ (project \sim exams)
lmod1
\#\#
\#\# Call:
\#\# lm (formula $=$ project \sim exams)
\#\#
\#\# Coefficients:

\#\# (Intercept)	exams1	exams2	
\#\#	23.4567	-0.2502	0.9006

"project ~ exams" is the formula we give to R. It tells us the response variable is "project" and the explanatory variables are contained in "exams". By default, R assumes we want an intercept term so we use the no intercept data in the formula.

Linear model in R

We can also give the function a data frame. First we create the data frame:

```
df = data.frame(cbind(project,exams))
df
```

\#\#	project	V2	V3
\#\#	1	90	87
\#\#	2	65	86
\#\#	3	69	73
\#\#	4	79	65
\#\#	5	85	90
		90	

Linear model in R

Next, we fit the linear model

$$
\operatorname{lmod} 2=\operatorname{lm}(\text { project } \sim \text {., data }=\text { df) }
$$

lmod2
\#\#
\#\# Call:
\#\# lm (formula $=$ project ~ ., data $=$ df)
\#\#
\#\# Coefficients:

\#\# (Intercept)	V2	V3	
\#\#	23.4567	-0.2502	0.9006

In this case "project \sim., data $=d f$ " tells R that the data are contained in df, where "project" is the name of the response variable, and "." tells us to use all the remaining variables as predictors. Once again, R includes the intercept for us

In-lab activity (part 2)

We have calculated the coefficients for the linear model (including an intercept term) using the $\operatorname{Im}()$ function and the data from part 1
coef(lmod1)

```
## (Intercept) exams1 exams2
## 23.4566800 -0.2502367 0.9006347
```

From lecture, we know the formula for the coefficients is $\mathbf{b}=\left(\mathbb{X}^{\top} \mathbb{X}\right)^{-1} \mathbb{X}^{\top} \mathbf{y}$. Use R to calculate this quantity for the data from part 1 and compare to the coefficients above

Reminders:

- Make sure to include the intercept term
- solve() inverts a matrix, t() transposes a matrix, and $\% * \%$ multiplies matrices together

In-lab activity (part 2)

$$
\begin{aligned}
& \text { coefficients }=\text { solve(t(X) \%*\% X) \% \% \% t(X) \% } \% \% \text { project } \\
& \text { coefficients }
\end{aligned}
$$

\#\#	$[, 1]$
\#\# [1,]	-0.2502367
\#\# [2,]	0.9006347
\#\# [3,]	23.4566800

Lab ticket

1. Suppose \mathbb{A} is a 4×6 matrix and \mathbb{B} is a 3×6 matrix.

Does $\mathbb{A B}$ exist? If so, what is the dimension of $\mathbb{A} \mathbb{B}$?

- Does $\mathbb{A} \mathbb{B}^{\top}$ exist? If so, what is the dimension of $\mathbb{A} \mathbb{B}^{\top}$?

2. Suppose our data are as follows: response variable $\mathbf{y}=(50,40,48)$ and one predictor $\mathbf{x}=(12,6,10)$

- What is the linear model (with an intercept) in matrix notation? Make sure to write out the full matrices

