Stats 401 Lab 4

Naomi Giertych

$$
9 / 28 / 2018
$$

Announcements

- Homework 3 is due today
- Quiz 1 is on October 5 (next week!)
- In lab
- Approximately 40 minutes
- Let us know NOW if you have special accomodations

Quiz Topics

- Summations
- R Exercises
- Basic matrix computations
- Fitting a linear model
- Essentially HW 1-4 and notes 1-4 (ending Wednesday)

Examining the Linear Model

- Recall the sample linear model in matrix form: $\mathbf{y}=\mathbb{X} \mathbf{b}+\mathbf{e}$
- The goal is to fit a curve that best fits the observed data
- We do this by minimizing the residuals

Minimizing the Residuals

- Residual Sum of Squares (RSS):

$$
\sum_{i=1}^{n}\left(y_{i}-m x_{i}-c\right)^{2}
$$

where $\left(y_{i}-m x_{i}-c\right)$ is the residual of observation i

- Recall that we find the minimum and maximum of a function by taking the derivative and setting it equal to 0 .
- Since RSS depends on m and c, we need to solve $\partial R S S / \partial m=0$ and $\partial R S S / \partial c=0$
- Note: $R S S \geq 0$ and arbitrarily large for poor choices of m and c, it has a minimum but not a maximum.

Minimizing the Residuals, cont.

- The general solution to these equations is precisely: $\mathbf{b}=$ $\left[\mathbb{X}^{\mathbb{T}} \mathbb{X}\right]^{-1} \mathbb{X}^{T} \mathbf{y}$
(You will NOT be required to reproduce these results.)
- Constructing the general RSS:
- residual for unit i is $e_{i}=y_{i}-[\mathbb{X} \mathbf{b}]_{i}$
- $R S S=\sum_{i=1}^{n} e_{i}^{2}$

Probability

- Recall: random variable X is a random number with probabilities assigned to the outcomes
- Recall: A random variable can take on discrete (e.g. a die: $\{1$, $2,3,4,5,6\}$) or continuous values (e.g. weight following a normal distribution)
- Suggestion: Review from STATS 250 the concepts of expected value and variance and the properties of common distrbutions such as the normal.

In Lab Exercises (Part 1)

- Show $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n}\left(x_{i}^{2}\right)-n(\bar{x})^{2}$.
- Show how $\mathbf{y}=\mathbb{X} \mathbf{b}$, with n observations, can be written as a sum. $\left(\mathbf{y}_{n \times 1}, \mathbb{X}_{n \times p}, \mathbf{b}_{p \times 1}\right)$
- Show how $\sum_{i=1}^{n} 3 x_{i}$ can be written in matrix form.

In Lab Exercises (Part 2)

- Let Y be a discrete random variable that takes on values 0,1 , and 2 with probabilities $0.5,0.3$, and 0.2 respectively.
- What is the expected value of Y ?
- What is the variance of Y ?
- (Challenge): Suppose instead that Y is a continuous random variable from $[0,3]$. What would be a natural extension of the calculation of the expected value of Y; i.e. how would you sum across $[0,3]$? (No calculations necessary.)

In Lab Exercises (Part 3)

- Suppose we define \mathbb{A}, \mathbb{B}, and \mathbb{C} as follows,

A

\#\#	$[, 1]$	$[, 2]$
\#\# [1,]	0	3
\#\# [2,]	1	2
\#\# [3,]	-2	-2

B

\#\#	$[, 1]$	$[, 2]$
\#\# [1,]	1	0
\#\# [2,]	-2	1

In Lab Exercises (Part 2) (cont.)

C

\#\#	$[, 1]$	$[, 2]$
\#\# [1,]	0	1
\#\# [2,]	0	1
\#\# [3,]	0	1
\#\# [4,]	0	1

Write the commands that would produce these matrices in R .

Lab Ticket

Using the matrices from the lab exercise, calculate the matrices returned by following r commands:

1. $\mathrm{A} \% * \% \mathrm{~B}$
2. $t(A)$
3. solve(B)

- Sugar pumpkins are coming into season! They're often used to make pumpkin pie. Let X be the weight of a sugar pie pumpkin (in lbs) and suppose it is known that $X \sim$ normal $(2.5$, $0.5)$. Using pnorm (), find the probability that a pumpkin chosen at random will weigh less than 1.9 lbs .
- (Challenge Question) Suppose we draw 20 sugar pumpkins at random. What is the probability that the average weight of the pumpkins will be less than 2.3 lbs . (Hint: It may be useful to review the Central Limit Theorem from STATS 250.)

