Stats 401 Lab 4

Naomi Giertych

9/28/2018

In Lab Exercises (Part 1)

- Show $\sum_{i=1}^{n} (x_i \bar{x})^2 = \sum_{i=1}^{n} (x_i^2) n(\bar{x})^2$.
- Show how y = Xb, with n observations, can be written as a sum. (y_{n×1}, X_{n×p}, b_{p×1})
- Show how $\sum_{i=1}^{n} 3x_i$ can be written in matrix form.

In Lab Exercises (Part 1) Solutions

•
$$= \sum_{i=1}^{n} (x_i^2) - n(\bar{x})^2$$

In Lab Exercises (Part 1) Solutions cont.

Show how $\mathbf{y} = \mathbb{X}\mathbf{b}$, with n observations, can be written as a sum. $(\mathbf{y}_{n \times 1}, \mathbb{X}_{n \times p}, \mathbf{b}_{p \times 1})$

	$\begin{bmatrix} y_1 \end{bmatrix}$		x_{11}	<i>x</i> ₁₂		x_{1p}	$\left[\begin{array}{c} b_1 \end{array} \right]$
	<i>y</i> ₂		x ₂₁	<i>x</i> ₂₂		x _{2p}	b ₂
•	:	=	:	÷	·	÷	:
	y _n		x_{n1}	x _{n2}		x _{np}	$\left\lfloor b_p \right\rfloor$
	y_1		x ₁₁ b	$1 x_1$	2 <i>b</i> 2		$x_{1p}b_p$
	<i>y</i> ₂		x ₂₁ b	$1 x_{2}$	2 <i>b</i> 2	• • •	$x_{2p}b_p$
	:	=	÷				
	y _n		_x _{n1} b	$1 x_n$	₂ b ₂		x _{np} b _p
	$\left[y_1 \right]$		$\sum_{j=1}^{n}$	$1 x_{1j} b$	li [
	<i>y</i> ₂		$\sum_{j=1}^{n}$	$1 x_{2j} b$	lj		
	:	=		÷			
	y _n		$\sum_{j=1}^{n}$	1 x _{nj} b	j]		

In Lab Exercises (Part 1) Solutions cont.

• Show how $\sum_{i=1}^{n} 3x_i$ can be written in matrix form.

•
$$\sum_{i=1}^{n} 3x_i = 3x_1 + 3x_2 + \dots + 3x_n$$

• $3x_1 + 3x_2 + \dots + 3x_n = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$
• $\begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} 3 \\ 3 \\ \vdots \\ 3 \end{bmatrix} = \mathbf{x3}$

In Lab Exercises (Part 2)

- Let Y be a discrete random variable that takes on values 0, 1, and 2 with probabilities 0.5, 0.3, and 0.2 respectively.
- What is the expected value of Y?
- What is the variance of Y?
- (Challenge): Suppose instead that Y is a continuous random variable from [0,3]. What would be a natural extension of the calculation of the expected value of Y; i.e. how would you sum across [0,3]? (No calculations necessary.)

In Lab Exercises (Part 2) Solutions

•
$$E(Y) = 0 \times (0.5) + 1 \times (0.3) + 2 \times (0.2) = 0.7$$

►
$$Var(Y) = E[(Y - E(Y))^2] = E[Y^2 - 2YE(Y) + E(Y)^2]$$

► $E[Y^2 - 2YE(Y) - E(Y^2)] = E(Y^2) - 2E(Y)E(Y) + E(Y)^2$

$$E(Y^2) - 2E(Y)E(Y) + E(Y)^2 = E(Y^2) - E(Y)^2$$

•
$$E(Y^2) = 0^2 \times (0.5) + 1^2 \times (0.3) + 2^2 \times (0.2) = 1.1$$

•
$$Var(Y) = 1.1 - (0.7)^2 = 1.1 - 0.49 = 0.61$$

 Challenge solution: The natural extension of the summation over discrete values of {0, 1, 2, 3} would be the integral from 0 to 3 (across [0, 3]).

In Lab Exercises (Part 3)

 \blacktriangleright Suppose we define $\mathbb{A},$ $\mathbb{B},$ and \mathbb{C} as follows,

А			
##		Г 1]	[2]
ππ		L, IJ	L,∠J
##	[1,]	0	3
##	[2,]	1	2
##	[3,]	-2	-2
	- ,-		
В			
##		[.1]	[.2]
шш	Г ₄]	-,,,,,,,,,,,,,-	-,-1
##	L⊥,]	T	0
##	[2,]	-2	1

In Lab Exercises (Part 2) (cont.)

Write the commands that would produce these matrices in R.

In Lab Exercises (Part 3) Solutions.

- ► A: matrix(c(0, 1, -2, 3, 2, -2), nrow = 3)
- ▶ B: matrix(c(1, -2, 0, 1), nrow = 2)
- C: matrix(c(rep(0, 4), rep(1, 4)), nrow = 4)

Lab Ticket

Using the matrices from the lab exercise, calculate the matrices returned by following r commands:

- 1. A %*% B
- 2. t(A)
- 3. solve(B)
 - Sugar pumpkins are coming into season! They're often used to make pumpkin pie. Let X be the weight of a sugar pie pumpkin (in lbs) and suppose it is known that X~normal(2.5, 0.5). Using pnorm(), find the probability that a pumpkin chosen at random will weigh less than 1.9 lbs.
 - (Challenge Question) Suppose we draw 20 sugar pumpkins at random. What is the probability that the average weight of the pumpkins will be less than 2.3 lbs. (Hint: It may be useful to review the Central Limit Theorem from STATS 250.)

Lab Ticket Solutions

1. A %*% B

$$\begin{bmatrix}
0 & 3 \\
1 & 2 \\
-2 & -2
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
-2 & 1
\end{bmatrix} =
\begin{bmatrix}
-6 & 3 \\
-3 & 2 \\
2 & -2
\end{bmatrix}$$
2. t(A)

$$\begin{bmatrix}
0 & 1 & -2 \\
3 & 2 & -2
\end{bmatrix}$$
3. solve(B)

$$\begin{bmatrix}
1 & 0 \\
2 & 1
\end{bmatrix} =
\begin{bmatrix}
1 & 0 \\
2 & 1
\end{bmatrix}$$

Lab Ticket Solutions cont.

- Using pnorm(), find the probability that a pumpkin chosen at random will weigh less than 1.9 lbs.
 - pnorm(1.9, 2.5, 0.5) = 0.1150697
- (Challenge Question)
 - Since $X \sim N(2.5, 0.5)$, from the CLT we know that $\bar{X} \sim N(2.5, \frac{0.5}{\sqrt{20}})$
 - Then, the probability that the average weight of the pumpkins will be less than 2.3 lbs is pnorm(2.3, 2.5, 0.5/sqrt(20)) = 0.03681914