Stats 401 Lab 4

Naomi Giertych

$$
9 / 28 / 2018
$$

In Lab Exercises (Part 1)

- Show $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n}\left(x_{i}^{2}\right)-n(\bar{x})^{2}$.
- Show how $\mathbf{y}=\mathbb{X} \mathbf{b}$, with n observations, can be written as a sum. $\left(\mathbf{y}_{n \times 1}, \mathbb{X}_{n \times p}, \mathbf{b}_{p \times 1}\right)$
- Show how $\sum_{i=1}^{n} 3 x_{i}$ can be written in matrix form.

In Lab Exercises (Part 1) Solutions

- Show $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n}\left(x_{i}^{2}\right)-n(\bar{x})^{2}$.
- $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n}\left(x_{i}^{2}-2 x_{i} \bar{x}+\bar{x}\right)$
- $=\sum_{i=1}^{n}\left(x_{i}^{2}\right)+2 \bar{x} \sum_{i=1}^{n}\left(x_{i}\right)+\bar{x} \sum_{i=1}^{n}(1)$
- however $\sum_{i=1}^{n}\left(x_{i}\right)=n\left(\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}\right)\right)=n \bar{x}$
- however $\bar{x} \sum_{i=1}^{n}(1)=n \bar{x}$
- $=\sum_{i=1}^{n}\left(x_{i}^{2}\right)+2 \bar{x} \sum_{i=1}^{n}\left(x_{i}\right)+\bar{x} \sum_{i=1}^{n}(1)=\sum_{i=1}^{n}\left(x_{i}^{2}\right)+2 n \bar{x}^{2}-n \bar{x}^{2}$
- $=\sum_{i=1}^{n}\left(x_{i}^{2}\right)-n(\bar{x})^{2}$

In Lab Exercises (Part 1) Solutions cont.

- Show how $\mathbf{y}=\mathbb{X} \mathbf{b}$, with n observations, can be written as a sum. $\left(\mathbf{y}_{n \times 1}, \mathbb{X}_{n \times p}, \mathbf{b}_{p \times 1}\right)$

$$
\begin{aligned}
& {\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 p} \\
x_{21} & x_{22} & \ldots & x_{2 p} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n 1} & x_{n 2} & \ldots & x_{n p}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{p}
\end{array}\right]} \\
& \left.\qquad \begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{cccc}
x_{11} b_{1} & x_{12} b_{2} & \ldots & x_{1 p} b_{p} \\
x_{21} b_{1} & x_{22} b_{2} & \ldots & x_{2 p} b_{p} \\
\vdots & & & \\
x_{n 1} b_{1} & x_{n 2} b_{2} & \ldots & x_{n p} b_{p}
\end{array}\right] \\
& -\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
\sum_{j=1}^{n} x_{1 j} b_{j} \\
\sum_{j=1}^{n} x_{2 j} b_{j} \\
\vdots \\
\sum_{j=1}^{n} x_{n j} b_{j}
\end{array}\right]
\end{aligned}
$$

In Lab Exercises (Part 1) Solutions cont.

- Show how $\sum_{i=1}^{n} 3 x_{i}$ can be written in matrix form.
- $\sum_{i=1}^{n} 3 x_{i}=3 x_{1}+3 x_{2}+\cdots+3 x_{n}$
- $3 x_{1}+3 x_{2}+\cdots+3 x_{n}=\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]$

$$
\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

- $\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]\left[\begin{array}{c}3 \\ 3 \\ \vdots \\ 3\end{array}\right]=x 3$

In Lab Exercises (Part 2)

- Let Y be a discrete random variable that takes on values 0,1 , and 2 with probabilities $0.5,0.3$, and 0.2 respectively.
- What is the expected value of Y ?
- What is the variance of Y ?
- (Challenge): Suppose instead that Y is a continuous random variable from $[0,3]$. What would be a natural extension of the calculation of the expected value of Y; i.e. how would you sum across $[0,3]$? (No calculations necessary.)

In Lab Exercises (Part 2) Solutions

- $E(Y)=0 \times(0.5)+1 \times(0.3)+2 \times(0.2)=0.7$
- $\operatorname{Var}(Y)=E\left[(Y-E(Y))^{2}\right]=E\left[Y^{2}-2 Y E(Y)+E(Y)^{2}\right]$
- $E\left[Y^{2}-2 Y E(Y)-E\left(Y^{2}\right)\right]=E\left(Y^{2}\right)-2 E(Y) E(Y)+E(Y)^{2}$
- $E\left(Y^{2}\right)-2 E(Y) E(Y)+E(Y)^{2}=E\left(Y^{2}\right)-E(Y)^{2}$
- $E\left(Y^{2}\right)=0^{2} \times(0.5)+1^{2} \times(0.3)+2^{2} \times(0.2)=1.1$
- $\operatorname{Var}(Y)=1.1-(0.7)^{2}=1.1-0.49=0.61$
- Challenge solution: The natural extension of the summation over discrete values of $\{0,1,2,3\}$ would be the integral from 0 to 3 (across [0, 3]).

In Lab Exercises (Part 3)

- Suppose we define \mathbb{A}, \mathbb{B}, and \mathbb{C} as follows,

A

\#\#	$[, 1]$	$[, 2]$
\#\# [1,]	0	3
\#\# [2,]	1	2
\#\# [3,]	-2	-2

B

\#\#	$[, 1]$	$[, 2]$
\#\# [1,]	1	0
\#\# [2,]	-2	1

In Lab Exercises (Part 2) (cont.)

C

\#\#	$[, 1]$	$[, 2]$
\#\# [1,]	0	1
\#\# [2,]	0	1
\#\# [3,]	0	1
\#\# [4,]	0	1

Write the commands that would produce these matrices in R .

In Lab Exercises (Part 3) Solutions.

- \mathbb{A} : matrix $(c(0,1,-2,3,2,-2)$, nrow $=3)$
- \mathbb{B} : matrix $(c(1,-2,0,1)$, nrow $=2)$
- \mathbb{C} : matrix $(c(r e p(0,4), \operatorname{rep}(1,4))$, nrow $=4)$

Lab Ticket

Using the matrices from the lab exercise, calculate the matrices returned by following r commands:

1. $\mathrm{A} \% * \% \mathrm{~B}$
2. $t(A)$
3. solve(B)

- Sugar pumpkins are coming into season! They're often used to make pumpkin pie. Let X be the weight of a sugar pie pumpkin (in lbs) and suppose it is known that $X \sim$ normal $(2.5$, $0.5)$. Using pnorm (), find the probability that a pumpkin chosen at random will weigh less than 1.9 lbs .
- (Challenge Question) Suppose we draw 20 sugar pumpkins at random. What is the probability that the average weight of the pumpkins will be less than 2.3 lbs . (Hint: It may be useful to review the Central Limit Theorem from STATS 250.)

Lab Ticket Solutions

1. $\mathrm{A} \% * \% \mathrm{~B}$

$$
-\left[\begin{array}{cc}
0 & 3 \\
1 & 2 \\
-2 & -2
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]=\left[\begin{array}{cc}
-6 & 3 \\
-3 & 2 \\
2 & -2
\end{array}\right]
$$

2. $t(A)$

$$
-\left[\begin{array}{lll}
0 & 1 & -2 \\
3 & 2 & -2
\end{array}\right]
$$

3. solve(B)

$$
\text { - } \frac{1}{1}\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]
$$

Lab Ticket Solutions cont.

- Using pnorm(), find the probability that a pumpkin chosen at random will weigh less than 1.9 lbs .
- pnorm(1.9, 2.5, 0.5) $=0.1150697$
- (Challenge Question)
- Since $X \sim N(2.5,0.5)$, from the CLT we know that $\bar{X} \sim$ $N\left(2.5, \frac{0.5}{\sqrt{20}}\right)$
- Then, the probability that the average weight of the pumpkins will be less than 2.3 lbs is pnorm(2.3, 2.5, $0.5 / \mathrm{sqrt}(20)$) $=0.03681914$

