Stats 401 Lab 6

Ed Wu

10/12/2018

Announcements

- Homework 5 is due next Friday (Oct 19)

Outline

- Bivariate Random Variables
- Correlation and Covariance
- The Bivariate Normal Distribution

Bivariate Random Variables

- Recall: a random variable X is a value whose outcome is determined by a random process
- For example, X might be the value of a roll of a die
- X takes a value in $\{1,2,3,4,5,6\}$, each with probability $1 / 6$
- We might be interested in vector valued random variables instead
- A bivariate random variable (X, Y) is a vector of length 2 whose values are each random variables

Bivariate Random Variables

- One reason to consider the bivariate random variable (X, Y) jointly is that the outcomes for X and Y may be related
- Suppose we roll two dice. We let X be the value of the first die and Y be the sum of the two dice. Then
$\mathrm{P}((X, Y)=(1,7))=\mathrm{P}($ First Die is 1 , Second Die is 6$)=1 / 36$

Measuring Association

- Correlation is a measure of the linear association between two random variables
- If X tends to be large when Y tends to be large, X and Y are positively correlated
- If X tends to be small when Y tends to be large, X and Y are negatively correlated
- If X and Y have no linear association, then the correlation between X and Y is zero

Correlation

- Correlation is always between -1 and 1 (inclusive)
- $\operatorname{Cor}(X, Y)= \pm 1$ implies linear dependence between X and Y
- This means we can write a linear equation to express the value of X in terms of Y (and vice versa)
- Let X be the value of the roll of a die and Y be one plus twice the value of X
- Since we can write Y as $2 X+1, \operatorname{Cor}(X, Y)=1$
- Correlation is symmetric: $\operatorname{Cor}(X, Y)=\operatorname{Cor}(Y, X)$

Covariance

- Covariance is the unscaled version of correlation
- While correlation has been scaled to remove units, covariance depends on the original units
- If $\operatorname{Cov}(X, Y)=2$ and $\operatorname{Cor}(X, Y)=0.5$, then $\operatorname{Cov}(2 X, Y)$ will be 4 , while $\operatorname{Cor}(X, Y)$ remains 0.5
- Covariance is less interpretable than correlation because the size of the covariance depends on the units of the random variables - correlation is always between -1 and 1
- Covariance is often more useful for calculations

Formulas

Covariance

$$
\operatorname{Cov}(X, Y)=\mathrm{E}[(X-\mathrm{E}(X))(Y-\mathrm{E}(Y)]
$$

Correlation

$$
\operatorname{Cor}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

Formulas

Suppose we have n measurements $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$. Let \bar{x} and \bar{y} be the sample means of $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$.
Then we have the sample covariance:

$$
\operatorname{cov}(\mathbf{x}, \mathbf{y})=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

and sample correlation:

$$
\operatorname{cor}(\mathbf{x}, \mathbf{y})=\frac{\operatorname{cov}(\mathbf{x}, \mathbf{y})}{\sqrt{\operatorname{var}(\mathbf{x}) \operatorname{var}(\mathbf{y})}}
$$

(reminder $\operatorname{var}(\mathbf{x})$ is the sample variance of $\left(x_{1}, \ldots, x_{n}\right)$)

Relationship between Covariance and Sample Covariance Formulas

$$
\begin{aligned}
& \operatorname{Cov}(X, Y)=\mathrm{E}[(X-\mathrm{E}(X))(Y-\mathrm{E}(Y)] \\
& \operatorname{cov}(\mathbf{x}, \mathbf{y})=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
\end{aligned}
$$

Example

Suppose we flip two coins, each with a 1 on one side and a 2 on the other. Let X be the value of the first coin and Y the sum of the two flips

What is the covariance of X and Y ?

Example

Let's use R to see how close the sample covariance is to the covariance

The following function takes n samples from the bivariate random variable described

```
my_bivrv = function(n){
    flips = replicate(n,sample(1:2,2,replace = TRUE))
    x = flips[1,]
    y = apply(flips,2,sum)
    return(cbind(x,y))
}
```


Example

We use my_bivrv() to draw 10 samples
xy = my_bivrv(10)
head (xy)

\#\#			x
\#\#			
\#\#	[1,]	1	3
\#\# [2,]	2	4	
\#\# [3,]	2	3	
\#\# [4,]	1	2	
\#\# [5,]	2	3	
\#\# [6,]	2	3	

Then we calculate the sample covariance $\operatorname{cov}(x y[, 1], x y[, 2])$
\#\# [1] 0.2

Example

We generate samples of size $10,50,100,500,1000$ and calculate the covariance each time using the function above. We can see that the sample covariance is generally close to the true value of 0.25 for larger sample sizes.

\#\#	sample size sample covariance	
\#\# [1,]	10	0.2000000
\#\# [2,]	50	0.2959184
\#\# [3,]	100	0.2581818
\#\# [4,]	500	0.2493026
\#\# [5,]	1000	0.2497047

Lab Activity (Part 1)

1. If $\operatorname{Cor}(W, Z)=0.5$, what is the correlation of $\operatorname{Cor}(2 W, Z+1)$?
2. Let (X, Y) take the values $(0,1),(1,1),(1,2)$, each with probability $1 / 3$

- What is the covariance of X and Y ?
- We take a sample of size 5: $(0,1),(0,1),(1,2),(1,1),(1,2)$. What is sample covariance?

Bivariate Normal Distribution

- Suppose $X \sim \mathrm{~N}\left(\mu_{x}, \sigma_{x}\right)$ and $Y \sim \mathrm{~N}\left(\mu_{y}, \sigma_{y}\right)$ are normal random variables
- (X, Y) is a bivariate normal random variable
- We can characterize a bivariate normal random variable with its mean vector (μ_{x}, μ_{y}) and its variance-covariance matrix

$$
\mathbb{V}=\left[\begin{array}{cc}
\sigma_{x}^{2} & \operatorname{Cov}(X, Y) \\
\operatorname{Cov}(Y, X) & \sigma_{y}^{2}
\end{array}\right]
$$

Lab Activity (Part 2)

The scatterplot below was generated from a bivariate normal distribution with mean vector $(0,0)$

Which of the following is the variance-covariance matrix?

$$
\text { 1. }\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] ; 2 .\left[\begin{array}{cc}
1 & 0.25 \\
0.25 & 1
\end{array}\right] ; 3 .\left[\begin{array}{cc}
1 & -0.75 \\
-0.75 & 1
\end{array}\right]
$$

Lab Activity (Part 2)

The scatterplot below was generated from a bivariate normal distribution with mean vector $(0,0)$

Which of the following is the variance-covariance matrix?

$$
\text { 1. }\left[\begin{array}{cc}
1 & -0.2 \\
-0.2 & 1
\end{array}\right] ; 2 .\left[\begin{array}{cc}
1 & 0.2 \\
0.2 & 1
\end{array}\right] ; 3 .\left[\begin{array}{cc}
1 & 0.7 \\
0.7 & 1
\end{array}\right]
$$

Lab Activity (Part 2)

The scatterplot below was generated from a bivariate normal distribution with mean vector $(0,0)$

Which of the following is the variance-covariance matrix?

$$
\text { 1. }\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] ; 2 .\left[\begin{array}{cc}
1 & 0.25 \\
0.25 & 1
\end{array}\right] ; 3 .\left[\begin{array}{cc}
1 & -0.75 \\
-0.75 & 1
\end{array}\right]
$$

Multivariate Random Variables

In this lab, we discussed bivariate random variables and the bivariate normal distribution. We can extend these concepts to multivariate random variables

- For example, we might have the random vector $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{p}\right)$

Multivariate Random Variables

- Summary statistics for a multivariate random variable include the expected value vector and the variance-covariance matrix
- The expected value vector $\mathrm{E}(\mathbf{X})=\left(\mathrm{E}\left(X_{1}\right), \ldots, \mathrm{E}\left(X_{p}\right)\right)$ tells us the means for each component of \mathbf{X}
- The variance-covariance matrix gives the variances for each component along the diagonal and the pairwise covariances in the other entries:

$$
\mathbb{V}=\left[\begin{array}{cccc}
\operatorname{Var}\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \ldots & \operatorname{Cov}\left(X_{1}, X_{p}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Var}\left(X_{2}\right) & \ldots & \operatorname{Cov}\left(X_{2}, X_{p}\right) \\
\vdots & \vdots & & \vdots \\
\operatorname{Cov}\left(X_{p}, X_{1}\right) & \operatorname{Cov}\left(X_{p}, X_{2}\right) & \ldots & \operatorname{Var}\left(X_{p}\right)
\end{array}\right]
$$

Lab Ticket

1. Why is $\left[\begin{array}{cc}4 & 0 \\ 0.25 & 4\end{array}\right]$ not a valid variance-covariance matrix?
2. Let (X, Y) be bivariate normal with mean $(6,4)$ and variance-covariance matrix $\mathbb{V}=\left[\begin{array}{ll}4 & 0 \\ 0 & 9\end{array}\right]$.

- What are the mean and standard deviation of Y ?
- What is the covariance of X and Y ?

