Stats 401 Lab 6

Ed Wu

10/12/2018

Lab Activity (Part 1)

1. If $\operatorname{Cor}(W, Z)=0.5$, what is the correlation of $\operatorname{Cor}(2 W, Z+1)$?
2. Let (X, Y) take the values $(0,1),(1,1),(1,2)$, each with probability $1 / 3$

- What is the covariance of X and Y ?
- We take a sample of size 5: $(0,1),(0,1),(1,2),(1,1),(1,2)$. What is sample covariance?

Lab Activity (Part 1) Solutions

Question 1 Part 1

$$
\operatorname{Cor}(2 W, Z+1)=\frac{\operatorname{Cov}(2 W, Z+1)}{\sqrt{\operatorname{var}(2 W) \operatorname{var}(Z+1)}}
$$

$$
\begin{array}{r}
\operatorname{Cov}(2 W, Z+1)=E[2 W-E(2 W)] E[(Z+1)-E(Z+1)] \\
=E[2 W-2 E(W)] E[Z+1-(E(Z)+1)] \\
\\
=2 E[W-E(W)] E[Z-E(Z)] \\
=2 \operatorname{Cov}(W, Z)
\end{array}
$$

Lab Activity (Part 1) Solutions, cont.

Question 1 Part 1 (cont)

$$
\begin{aligned}
& \operatorname{Var}(2 W)=4 \operatorname{Var}(W) \\
& \operatorname{Var}(Z+1)=\operatorname{Var}(Z)
\end{aligned}
$$

$$
\operatorname{Cor}(2 W, Z+1)=\frac{2 \operatorname{Cov}(W, Z)}{\sqrt{4 \operatorname{Var}(W) \operatorname{Var}(Z)}}
$$

$$
\begin{aligned}
& =\frac{\operatorname{Cov}(W, Z)}{\sqrt{\operatorname{Var}(W) \operatorname{Var}(Z)}} \\
& =\operatorname{Cor}(W, Z)=0.5
\end{aligned}
$$

Lab Activity (Part 1) Solutions, cont.

Question 1 Part 2

$$
\begin{gathered}
\operatorname{cov}(x, y)=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
=\frac{1}{4-1} \sum_{i=1}^{4}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
=\frac{1}{4} \sum_{i=1}^{4}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
\bar{x}=\frac{3}{5} \\
\bar{y}=\frac{7}{5}
\end{gathered}
$$

Lab Activity (Part 1) Solutions, cont.

Question 1 Part 2

$$
\begin{array}{r}
\operatorname{cov}(x, y)=\frac{1}{4} \sum_{i=1}^{4}\left(x_{i}-\frac{3}{5}\right)\left(y_{i}-\frac{7}{5}\right) \\
=\frac{1}{4}\left[\left(0-\frac{3}{5}\right)\left(1-\frac{7}{5}\right)+\left(0-\frac{3}{5}\right)\left(1-\frac{7}{5}\right)+\right. \\
\left(1-\frac{3}{5}\right)\left(2-\frac{7}{5}\right)+\left(1-\frac{3}{5}\right)\left(1-\frac{7}{5}\right)+ \\
\left.\left(1-\frac{3}{5}\right)\left(2-\frac{7}{5}\right)\right] \\
=\frac{1}{4}\left[\left(-\frac{3}{5}\right)\left(-\frac{2}{5}\right)+\left(-\frac{3}{5}\right)\left(-\frac{2}{5}\right)+\right. \\
\left(\frac{2}{5}\right)\left(\frac{3}{5}\right)+\left(\frac{2}{5}\right)\left(-\frac{2}{5}\right)+ \\
\left.\left(\frac{2}{5}\right)\left(\frac{3}{5}\right)\right]
\end{array}
$$

Lab Activity (Part 1) Solutions, cont.

Question 1 Part 2 cont.

$$
\begin{aligned}
=\frac{1}{4}\left[\frac{6}{25}+\frac{6}{25}+\frac{6}{25}\right. & \left.-\frac{4}{25}+\frac{6}{25}\right] \\
& =\frac{1}{4} \times \frac{20}{25} \\
& =\frac{5}{25}=\frac{1}{5}
\end{aligned}
$$

Lab Activity (Part 2)

The scatterplot below was generated from a bivariate normal distribution with mean vector $(0,0)$

Which of the following is the variance-covariance matrix?

$$
\text { 1. }\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] ; 2 .\left[\begin{array}{cc}
1 & 0.25 \\
0.25 & 1
\end{array}\right] ; 3 .\left[\begin{array}{cc}
1 & -0.75 \\
-0.75 & 1
\end{array}\right]
$$

Lab Activity (Part 2)

The scatterplot below was generated from a bivariate normal distribution with mean vector $(0,0)$

Which of the following is the variance-covariance matrix?

$$
\text { 1. }\left[\begin{array}{cc}
1 & -0.2 \\
-0.2 & 1
\end{array}\right] ; 2 .\left[\begin{array}{cc}
1 & 0.2 \\
0.2 & 1
\end{array}\right] ; 3 .\left[\begin{array}{cc}
1 & 0.7 \\
0.7 & 1
\end{array}\right]
$$

Lab Activity (Part 2)

The scatterplot below was generated from a bivariate normal distribution with mean vector $(0,0)$

Which of the following is the variance-covariance matrix?

1. $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] ; 2$. $\left[\begin{array}{cc}1 & 0.25 \\ 0.25 & 1\end{array}\right] ; 3 .\left[\begin{array}{cc}1 & -0.75 \\ -0.75 & 1\end{array}\right]$

Lab Ticket

1. Why is $\left[\begin{array}{cc}4 & 0 \\ 0.25 & 4\end{array}\right]$ not a valid variance-covariance matrix?
2. Let (X, Y) be bivariate normal with mean $(6,4)$ and variance-covariance matrix $\mathbb{V}=\left[\begin{array}{ll}4 & 0 \\ 0 & 9\end{array}\right]$.

- What are the mean and standard deviation of Y ?
- What is the covariance of X and Y ?

Lab Ticket Solutions

1. It is not a valid variance-covariance because it is not symmetric.
2. (a.) The mean of Y is 4 and the standard deviation of Y is 3 .
3. (b.) The covariance of X and Y is 0 ; this does not mean that they are independent.
