Stats 401 Lab 8

Sanjana

10/25/2018

Outline

- Quick Reminder: If you are thinking about withdrawing from the course, the deadline is November 9th!
- Review of expectation, variance and covariance
- Midterm Q3 solved
- Introduction to confidence intervals

Review: Univariate Random Variable

- Recall: A random variable X is a value whose outcome is determined by a random process.
Can be be thought of as a random number with probabilities assigned to its outcomes.
- Each random variable X has a mean (μ_{x}) and variance (σ_{x}^{2}) associated with it. Then
- $\mu_{x}=E[X]$.

$$
\begin{aligned}
\sigma_{x}^{2}=\operatorname{Var}(\mathbf{X}) & =\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right] \\
& =\mathrm{E}\left[X^{2}+(\mathrm{E}[X])^{2}-2 X \mathrm{E}[X]\right] \\
& =\mathrm{E}\left[X^{2}\right]+\mathrm{E}\left[(\mathrm{E}[X])^{2}\right]-\mathrm{E}[2 X \mathrm{E}[X]] \\
& =\mathrm{E}\left[X^{2}\right]+(\mathrm{E}[X])^{2}-2 \mathrm{E}[X] \mathrm{E}[X] \\
& =\mathrm{E}\left[X^{2}\right]+(\mathrm{E}[X])^{2}-2(\mathrm{E}[X])^{2} \\
& =\mathrm{E}\left[\mathbf{X}^{2}\right]-(\mathrm{E}[\mathbf{X}])^{2}
\end{aligned}
$$

Review: Univariate Random Variable

- Linear combinations of X : consider $Y=a X+b$
- $\mathrm{E}[a X+b]=a \mathrm{E}[X]+b$
- $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$
- Normal Variable: let $X \sim \mathcal{N}\left(\mu_{x}, \sigma_{x}^{2}\right)$,

Let $Y=a X+b$
Then $\mathrm{E}[Y]=a \mu_{x}+b$ and $\operatorname{Var}(Y)=a^{2} \sigma_{x}^{2}$
$Y \sim \mathcal{N}\left(a \mu_{x}+b, a^{2} \sigma_{x}^{2}\right)$

Review: Bivariate Random Variables

- A bivariate random variable (X, Y) is a vector of length 2 whose values are each random variables.
- Correlation is a measure of the linear association between two random variables
- Correlation is always between -1 and 1 (inclusive)
- Correlation is symmetric: $\operatorname{Cor}(X, Y)=\operatorname{Cor}(Y, X)$
- Covariance is the unscaled version of correlation

$$
\begin{aligned}
\operatorname{Cov}(\mathbf{X}, \mathbf{Y}) & =\mathbf{E}[(\mathbf{X}-\mathbf{E}(\mathbf{X}))(\mathbf{Y}-\mathbf{E}(\mathbf{Y})] \\
& =\mathrm{E}[(X Y-X \mathrm{E}(Y)-\mathrm{E}(X) Y+\mathrm{E}(X) \mathrm{E}(Y)] \\
& =\mathrm{E}[X Y]-\mathrm{E}[X \mathrm{E}(Y)]-\mathrm{E}[\mathrm{E}(X) Y]+\mathrm{E}[\mathrm{E}(X) \mathrm{E}(Y)] \\
& =\mathrm{E}[X Y]-\mathrm{E}(X) \mathrm{E}(Y)-\mathrm{E}(X) \mathrm{E}(Y)+\mathrm{E}(X) \mathrm{E}(Y) \\
& =\mathbf{E}[\mathbf{X Y}]-\mathbf{E}(\mathbf{X}) \mathbf{E}(\mathbf{Y})
\end{aligned}
$$

$\operatorname{Corr}(\mathbf{X}, \mathbf{Y})=\frac{\operatorname{Cov}(\mathbf{X}, \mathbf{Y})}{\sqrt{\operatorname{Var}(\mathbf{X})} \sqrt{\operatorname{Var}(\mathbf{Y})}}$

Review: Bivariate Random Variables

- $\mathrm{E}[(X, Y)]=(\mathrm{E}(X), \mathrm{E}(Y))$
- $\operatorname{Var}(X, Y)=\left[\begin{array}{cc}\operatorname{Var}\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) \\ \operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Var}\left(X_{2}\right)\end{array}\right]$
- Remember: $\operatorname{Var}(X)=\operatorname{Cov}(X, X)$
- Linear Combinations of multivariate $\mathbf{X}=\left[\begin{array}{c}X_{1} \\ X_{2} \\ \vdots \\ X_{n}\end{array}\right]:$ consider $\mathbb{A} \mathbf{X}$
- $E(\mathbb{A} \mathbf{X})=\mathbb{A}(\mathbf{X})$
- $\operatorname{Var}(\mathbb{A} \mathbf{X})=\mathbb{A} \operatorname{Var}(\mathbf{X}) \mathbb{A}^{T}$

Review: Bivariate Normal Variables

If (X, Y) is bivariate normal where $X \sim \mathcal{N}\left(\mu_{X}, \sigma_{X}^{2}\right)$ and $Y \sim \mathcal{N}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ then $a X+b Y$ is also normal.

$$
-\mathrm{E}[a X+b Y]=a \mu_{X}+b \mu_{Y}
$$

$$
\begin{aligned}
\operatorname{Var}(\mathbf{a X}+\mathbf{b} \mathbf{Y}) & =\operatorname{Cov}(\mathbf{a X}+\mathbf{b} \mathbf{Y}, \mathbf{a X}+\mathbf{b} \mathbf{Y}) \\
& =\operatorname{Cov}(a X+b Y, a X)+\operatorname{Cov}(a X+b Y, b Y) \\
& =a \operatorname{Cov}(a X+b Y, X)+b \operatorname{Cov}(a X+b Y, Y) \\
& =a \operatorname{Cov}(a X, X)+a \operatorname{Cov}(b Y, X)+b \operatorname{Cov}(a X, Y)+b \operatorname{Cov}(b Y, Y) \\
& =a^{2} \operatorname{Cov}(X, X)+a b \operatorname{Cov}(Y, X)+b a \operatorname{Cov}(X, Y)+b^{2} \operatorname{Cov}(Y, Y) \\
& =a^{2} \operatorname{Var}(X)+a b \operatorname{Cov}(X, Y)+a b \operatorname{Cov}(X, Y)+b^{2} \operatorname{Var}(Y) \\
& =\mathbf{a}^{2} \operatorname{Var}(\mathbf{X})+\mathbf{2 a b C o v}(\mathbf{X}, \mathbf{Y})+\mathbf{b}^{2} \operatorname{Var}(\mathbf{Y}) \\
& =a^{2} \sigma_{X}^{2}+2 a b \operatorname{Cov}(X, Y)+b^{2} \sigma_{Y}^{2}
\end{aligned}
$$

So, if (X, Y) is bivariate normal as above, then
$a X+b Y \sim \mathcal{N}\left(a \mu_{X}+b \mu_{Y}, a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}+2 a b \operatorname{Cov}(X, Y)\right)$

In-lab Activity 1: Midterm Q3

Qtn) X and Y are bivariate random variables with respective means $\mu_{X}=\mu_{Y}=0$, standard deviations $\sigma_{X}=1$ and $\sigma_{Y}=2$ and correlation $\operatorname{cor}(X, Y)=0.5$. Find the distributions of $X+Y$ and $X-Y$.
Soln) $X+Y$ and $X-Y$ are both normally distributed since they are linear combinations of normal random variables. So, we need to find the following

- $\mathrm{E}(X+Y)$ and $\mathrm{E}(X-Y)$
- $\operatorname{Var}(X+Y)$ and $\operatorname{Var}(X-Y)$

We are given that
$-\mathrm{E}(X)=0, \operatorname{Var}(X)=\sigma_{X}^{2}=1$
$-\mathrm{E}(Y)=0, \operatorname{Var}(Y)=\sigma_{Y}^{2}=2^{2}=4$
$-\operatorname{Cor}(X, Y)=0.5$
So, $\operatorname{Cov}(X, Y)=\operatorname{Cor}(X, Y) \sqrt{\sigma_{X}^{2} \sigma_{Y}^{2}}=\operatorname{Cor}(X, Y) \sigma_{X} \sigma_{Y}=0.5(1)(2)=1$

In-lab Activity 1: Midterm Q3

- $\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]=0+0=0$ and $\mathrm{E}[X-Y]=\mathrm{E}[X]-\mathrm{E}[Y]=0-0=0$
- $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)=1+4+2(1)=7$
- $\operatorname{Var}(X-Y)=\operatorname{Var}(X)+\operatorname{Var}(-Y)+2 \operatorname{Cov}(X,-Y)=1+4-2(1)=3$

So, $X+Y \sim \mathcal{N}(0,7)$ and $X-Y \sim \mathcal{N}(0,3)$

In-lab Activity 2

Let (W, X, Y) be a multivariate normal vector such that $\mathrm{E}(X)=2 \mathrm{E}(Y)=2$ and $\mathrm{E}(W)=0$.
$\operatorname{Var}(X)=\operatorname{Var}(Y)=\operatorname{Var}(W)=2$.
$\operatorname{Cor}(X, Y)=-0.5, \operatorname{Cor}(Y, W)=-0.5, \operatorname{Cor}(X, W)=0$.
Find the distribution of $W+X-Y$.

In-lab Acitivity 2: Solution

$X-Y+W$ is a normal variable, since linear combinations of normal variables are normal.

- $\mathrm{E}(X-Y+W)=\mathrm{E}(X)+\mathrm{E}(Y)+\mathrm{E}(W)=2-1+0=1$
- $\operatorname{Var}\left(\left[\begin{array}{c}X \\ Y \\ W\end{array}\right]\right)=\left[\begin{array}{ccc}\operatorname{Var}(X) & \operatorname{Cov}(X, Y) & \operatorname{Cov}(X, W) \\ \operatorname{Cov}(Y, X) & \operatorname{Var}(Y) & \operatorname{Cov}(Y, W) \\ \operatorname{Cov}(W, X) & \operatorname{Cov}(W, Y) & \operatorname{Var}(W)\end{array}\right]$
- $\operatorname{Cov}(X, Y)=\operatorname{Cor}(X, Y) \sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}=-0.5 \sqrt{22}=-1$
- $\operatorname{Cov}(X, W)=\operatorname{Cor}(X, W) \sqrt{\operatorname{Var}(X) \operatorname{Var}(W)}=0 \sqrt{22}=0$
- $\operatorname{Cov}(Y, W)=\operatorname{Cor}(Y, W) \sqrt{\operatorname{Var}(Y) \operatorname{Var}(W)}=-0.5 \sqrt{22}=-1$

So, $\operatorname{Var}\left(\left[\begin{array}{l}X \\ Y \\ W\end{array}\right]\right)=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$

In-lab Acitivity 2: Solution

Then, $X-Y+W=\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]\left[\begin{array}{l}X \\ Y \\ W\end{array}\right]=\mathbb{A} \mathbf{X}$, where $\mathbf{X}=\left[\begin{array}{l}X \\ Y \\ W\end{array}\right]$
$\operatorname{Var}(X-Y+W)=\operatorname{Var}(\mathbb{A} \mathbf{X})=\mathbb{A} \operatorname{Var}(\mathbf{X}) \mathbb{A}^{T}$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
1 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
2(1)+(-1)(-1)+0(1) \\
(-1) 1+2(-1)+(-1) 1 \\
0(1)+(-1)(-1)+2(1)
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
3 \\
-4 \\
3
\end{array}\right] \\
& =1(3)+(-1)(-4)+1(3) \\
& =10
\end{aligned}
$$

So, $\mathbf{X}-\mathbf{Y}+\mathbf{W} \sim \mathcal{N}(\mathbf{1}, \mathbf{1 0})$

Confidence Intervals

- We are we interested in studying confidence intervals?
- Cls essentially perform a two-sided hypothesis test and provide you with a estimate the true population value
- There are several natural uses for confidence intervals in regression:
- estimating population coefficients (β)
- comparing means of different populations
- predicting future values (prediction interval)
- predicting mean future values (confidence interval)

Confidence Intervals: formulae

- Recall from Stats250 that a $100(1-\alpha) \%$ confidence interval for a value is given by
- $x \pm z_{\frac{\alpha}{2}} \operatorname{s.e}(x)$ (population s.d. is known) or
- $x \pm t_{\left(\frac{\alpha}{2}, n-2\right)} \operatorname{s.e}(x)$ (population s.d. is unknown)
- Approximate Interval for Linear Model An approximate $100(1-\alpha) \mathrm{Cl}$ for β_{1} is

$$
\mathbf{b}_{1}-\mathbf{z}_{\frac{\alpha}{2}} \operatorname{SE}\left(\mathbf{b}_{1}\right)
$$

In-lab Activity 3: Constructing CI in R

Construct a $90 \% \mathrm{CI}$ for the association between GPA and ACT scores

```
# read-in dataset
gpa <- read.table("gpa.txt",header=T)
# fit model and print coefficients summary
fit <- lm(GPA~ACT, data=gpa)
fit_coef_smry <- summary(fit)$coefficients; fit_coef_smry
```

\#\#	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
\#\# (Intercept)	1.55870218	0.138016669	11.29358	$2.694524 \mathrm{e}-27$
\#\# ACT	0.05780049	0.005549788	10.41490	$1.015955 \mathrm{e}-23$

beta <- fit_coef_smry["ACT","Estimate"]
SE <- fit_coef_smry["ACT","Std. Error"]
z <- qnorm(1-0.1/2) \#for a 90\% CI using normal approximation
cat("CI = [", beta-z*SE, ",", beta+z*SE, "]")
\#\# CI = [0.04867191 , 0.06692908]

Lab Ticket

- Let X and Y be two random variables such that $\operatorname{Var}(X)=4$ and $\operatorname{Var}(Y)=9$. Find the range for the $\operatorname{Cov}(X, Y)$
- Let X, Y be bivariate normal such that they are independent. Further, $X \sim \mathcal{N}(1,4)$ and $Y \sim \mathcal{N}(2,9)$.
Find the distribution of the following:
- $2 X+1$
- $X-2 Y$
- Would a 90% confidence interval be broader or a 95% ? Justify your answer.

