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Factors

I Recall: factors are explanatory variables with discrete levels
I Factors are also called categorical variables
I For example, sex could be a factor with two levels: male and

female



Example
The iris data set was collected by Edgar Anderson. It contains
measurements from 150 samples of irises (50 of each of three
species: setosa, versicolor, and virginica). In this lab we will
consider the petal length and petal width measurements.

data(iris)
iris = iris[,3:5]
head(iris)

## Petal.Length Petal.Width Species
## 1 1.4 0.2 setosa
## 2 1.4 0.2 setosa
## 3 1.3 0.2 setosa
## 4 1.5 0.2 setosa
## 5 1.4 0.2 setosa
## 6 1.7 0.4 setosa

Suppose we want to study whether petal length varies by species.



Double Subscript Notation

I Let yij represent the petal length of the j-th iris sample of
species i , where i = 1, 2, 3 corresponds to the three species,
and j = 1, . . . , 50

I We have the following probability model for this experiment:

Yij = µi + εij

for i = 1, 2, 3 and j = 1, . . . , 50, where εij ∼ iid normal(0, σ)



Dummy Variables

I In order to convert our model from double subscript notation
to the linear model, we need to use “dummy” (or “indicator”)
variables

I A dummy variable for a factor level is equal to 1 if the
observation equals that level, and 0 otherwise

I If we look at the iris data set, we can see the factor “Species”
is 50 setosa, then 50 versicolor, then 50 virginica

I A dummy variable for versicolor would be the column vector of
50 0’s, then 50 1’s, then 50 0’s: (0, . . . , 0︸ ︷︷ ︸

50 times

, 1, . . . , 1︸ ︷︷ ︸
50 times

, 0, . . . , 0︸ ︷︷ ︸
50 times

, )



Lab Activity (Part 1)

Suppose we have 3 observations, and a factor variable for each
observation’s sex: (“Male”,“Female”,“Male”)

1. What is the dummy variable for “Male”?

Solution: (1, 0, 1)

2. What is the dummy variable for “Female”?

Solution: (0, 1, 0)



Converting to a Linear Model

I Now we can write the model in the form Y = Xβ + ε
I Let x1 = (1, . . . , 1︸ ︷︷ ︸

50 times

, 0, . . . , 0︸ ︷︷ ︸
100 times

) be the dummy variable

corresponding to setosa
I Let x2 = (0, . . . , 0︸ ︷︷ ︸

50 times

, 1, . . . , 1︸ ︷︷ ︸
50 times

, 0, . . . , 0︸ ︷︷ ︸
50 times

, ) be the dummy variable

corresponding to versicolor
I Let x3 = (0, . . . , 0︸ ︷︷ ︸

100 times

, 1, . . . , 1︸ ︷︷ ︸
50 times

) be the dummy variable

corresponding to virginica
I Let y = (y1, . . . , y150) =

(y1,1, . . . , y1,50, y2,1, . . . , y2,50, y3,1, . . . , y3,50) be the
concatenated petal length measurements

I Let e = (e1, . . . , e150) =
(e1,1, . . . , e1,50, e2,1, . . . , e2,50, e3,1, . . . , e3,50) be the
concatenated residuals



Linear Model

I One way to write the probability model is
Yk = µ1xk,1 + µ2xk,2 + µ3xk,3 + εk for k = 1, . . . , 150

I This is equivalent to Y = Xβ + ε where X =
[
x1 x2 x3

]
and

β = (µ1, µ2, µ3)
I In this case, the interpretation of the parameters (µ1, µ2, µ3)

are the means for each factor level



Iris Example Continued
We can obtain the sample linear model in R:

lm1 = lm(Petal.Length ~ Species - 1, data = iris)
summary(lm1)$coefficients[,1:2]

## Estimate Std. Error
## Speciessetosa 1.462 0.06085848
## Speciesversicolor 4.260 0.06085848
## Speciesvirginica 5.552 0.06085848

We can see, for example, that the coefficient for “setosa”
corresponds to the mean of the setosa samples:

mean(iris$Petal.Length[iris$Species == "setosa"])

## [1] 1.462



No Intercept vs. Intercept

I In the above model, we didn’t include an intercept
I We could also write the model with an intercept:

Yk = µ+ α2xk,2 + α3xk,3 + εk for k = 1, . . . , 150
I In this case, we would have the following interpretations

I µ would be the mean petal length of setosa
I α2 would be the difference between the mean of setosa and the

mean of versicolor
I α3 would be the difference between the mean of setosa and the

mean of virginica



Iris Example Continued

We can fit the sample linear model (with an intercept) in R:

lm2 = lm(Petal.Length ~ Species, data = iris)
summary(lm2)$coefficients[,1:2]

## Estimate Std. Error
## (Intercept) 1.462 0.06085848
## Speciesversicolor 2.798 0.08606689
## Speciesvirginica 4.090 0.08606689

Let’s check how these coefficients compare to our previous model



Over-specified Models

I In the model with the intercept, we had to drop one of the
dummy variables

I Suppose we had written the model as:
Yk = µ+ α3xk,3 + α2xk,2 + α3xk,3 + εk for k = 1, . . . , 150

I Why does this model not work?



R Warnings

I By default, R uses the intercept version. If we wish to switch
to the no intercept version, we need to specify that

I You may be working with R data in which factors are coded as
characters instead. This can cause issues with your code so it
is a good idea to convert these variables to factors prior to your
analysis



Lab Activity (Part 2)
Suppose we are interested in studying the relationship between
undergraduate major and salary. We collect a sample of size 7. We
collect the salary in 1000s, as well as the major (engineering,
computer science, or underwater basket weaving)

## salary occupation
## 1 112 eng
## 2 90 eng
## 3 75 cs
## 4 90 cs
## 5 80 ubw
## 6 157 ubw
## 7 69 ubw

1. What is the probability model in double subscript form? Make
sure to define all notation appropriately.

2. Suppose we wish to write out the sample linear model in the
form y = Xb + e. What is the full X matrix?



Lab Activity (Part 2) - Solutions
1. Yij = µi + εij where i = 1, 2, 3 indexes the major (engineering,

computer science, and underwater basket weaving) and j
indexes the observation. For i = 1 and i = 2, j = 1, 2. For
i = 3, j = 1, 2. µi is the mean for the i-th major, and εij are iid
normal with mean 0 and standard deviation σ

2. Let x1 be a dummy variable for engineering, x2 be a dummy
variable for computer science, and x3 be a dummy variable for
underwater basket weaving. We have the following X:

X =
[
x1 x2 x3

]
=



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1





Lab Activity (Part 3)
Returning to our iris example. We now include petal width in our
linear model:

lm3 = lm(Petal.Length ~ . -1, data = iris)
summary(lm3)$coefficients[,1:2]

## Estimate Std. Error
## Petal.Width 1.018712 0.15224171
## Speciessetosa 1.211397 0.06524192
## Speciesversicolor 2.909188 0.20882146
## Speciesvirginica 3.488090 0.31303383

Suppose we have a new observation that is of species virginica and
has a petal width of 1.

1. By hand, obtain the predicted value for this observation
2. In R, obtain a 95% prediction interval for this observation



Lab Activity (Part 3) - Solutions

1. The new observation would be x∗ =
[
1 0 0 1

]
. Thus the

predicted value is x∗b = 1.019 + 3.488
2.

xst = data.frame(Petal.Width = 1, Species = "virginica")
predict(lm3,xst,interval = "prediction")

## fit lwr upr
## 1 4.506802 3.69206 5.321543



Lab Ticket
We are studying whether the weights of red and pink grapefruit
differ. We collect 5 grapefruits and measure their weight in grams:

## weight type
## 1 8.3 red
## 2 7.0 red
## 3 7.5 pink
## 4 9.0 red
## 5 6.0 pink

We also fit a linear model:

## Estimate Std. Error
## (Intercept) 6.75 0.7285831
## typered 1.35 0.9405967

1. Write out the design matrix X used in this linear model
2. We have a new grapefruit that is pink. What is its predicted

weight?



Lab Ticket - Solutions

1. This model includes an intercept and the dummy variable for
red grapefruits. Thus we have:

X =


1 1
1 1
1 0
1 1
1 0


2. The predicted weight is 6.75 + 1.35 × 0 = 6.75


