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Outline

I F tests and ANOVA
I Goodness of fit

I R squared
I Adjusted R Squared

I Model selection
I Lab Ticket



F Test/ANOVA Motivation

Why perform the F test?

I Want to know if additional variables are statistically significant.

How is this different from looking at the regression output?

I Regression output is testing each bi with all other bj fixed
I F test/ANOVA lets us test multiple variables for significance at once



Hypothesis Test outline

F-Test corresponds to a hypothesis test.

Recall from STATS250, a hypothesis test has the following steps:

I Establish the Null and Alternate hypothesis (H0,Ha)
I Find a test statistic (F-Statistic)
I Find the p-value

Prob(observing something as or more extreme than your test-stat)
I Conclusion: reject/ fail to reject Null hypothesis



F Test outline: Nested Models

Establish Hypothesis

I Let H0 be the base linear model Y = Xβ + ε
I Ha extends H0 by adding d additional variables, i.e Y = Xαβ + ε

So the Null hypothesis is that the smaller (base) model is better, whereas
the alternate hypothesis is that the additional variables being considered
are important and should be included in the model.

I H0 : Y = Xβ + ε, dimension(X) = n × q
I Ha : Y = Xaβa + ε, Xa = [X Z] where Z is the matrix of d

additional variables



F Test outline: Nested Models

Get Test-Statistic
f = (RSS0 − RSSa)/d

RSSa/(n − q)

I RSS0 and RSSa are the residual sum of squares for the null and
alternative models

I d is the difference in the degrees of freedom between the two models
I n − q is the degrees of freedom in the alternative model

Note:

I Under H0, the model generated F-statistic has an F distribution with
d and n − q degrees of freedom.

I If H0 is true, then f ≈ 1. So large values of f are evidence against
the null.



F Test outline: Nested Models
Get p-value
Let F be a random variable that follows the F-distribution with degrees of
freedom d , n − q

p-value = P(F > f )
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F Test outline: Nested Models

Conclusion

I Rule: Reject Null hypothesis if the p-value < significance level
(α = 0.01, 0.05, 0.1)

I Interpretation: We pick the linear model in the alternate hypothesis,
which is the model containing the additional variables. Hence we
conclude that the additional variables are significant.



F Test in R: Null mean model

This is the F-Test corresponding to the lm() output for the regression
model Y = Xβ + ε
- H0 : β = 0, i.e. all coefficients are zero
- Ha : alteast one of the coefficients is non-zero

Mathematically, this corresponds to the following:
- H0 : Y = β0 + ε
- Ha : Y = Xβ + ε

f = (RSS0 − RSSa)/d
RSSa/(n − q)

I q = Number of columns in X

I
d = Number of covariates (intercept not included)

= No of columns in X − 1 = q − 1
I n = Number of observations = No of rows in X



Example 1: Null mean model

Let us calculate the F-Statistic by hand and compare with the lm()
output. Recall the iris data

data(iris)
iris <- iris[,-2] #Remove the second column of original dataset
head(iris)

## Sepal.Length Petal.Length Petal.Width Species
## 1 5.1 1.4 0.2 setosa
## 2 4.9 1.4 0.2 setosa
## 3 4.7 1.3 0.2 setosa
## 4 4.6 1.5 0.2 setosa
## 5 5.0 1.4 0.2 setosa
## 6 5.4 1.7 0.4 setosa



Example 1: Examining F-Test in R
Consider the following linear model

lm1 <- lm(Petal.Length~Petal.Width, data=iris)
summary(lm1)

##
## Call:
## lm(formula = Petal.Length ~ Petal.Width, data = iris)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.33542 -0.30347 -0.02955 0.25776 1.39453
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.08356 0.07297 14.85 <2e-16 ***
## Petal.Width 2.22994 0.05140 43.39 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4782 on 148 degrees of freedom
## Multiple R-squared: 0.9271, Adjusted R-squared: 0.9266
## F-statistic: 1882 on 1 and 148 DF, p-value: < 2.2e-16



Example 1: Calculating the F-Statistic by hand

We know that f = (RSS0−RSSa)/d
RSSa/(n−q)

Let us find the relevant values:

RSS_a <- sum(residuals(lm1)^2)
RSS_0 <- sum((iris$Petal.Length - mean(iris$Petal.Length))**2)
#or
lm0 <- lm(Petal.Length ~ 1, data=iris) #Linear model with intercept only
RSS_0 <- sum(residuals(lm0)^2)

cat("RSS_0:", RSS_0, " ; RSS_a:", RSS_a, " ; n:",
nrow(model.matrix(lm1)), " ; q:", ncol(model.matrix(lm1)))

## RSS_0: 464.3254 ; RSS_a: 33.84475 ; n: 150 ; q: 2



Example 1: Calculating the F-Statistic by hand

## RSS_0: 464.3254 ; RSS_a: 33.84475 ; n: 150 ; q: 2

So,
f = (RSS0 − RSSa)/d

RSSa/(n − q)

= (464.3254 − 33.84475)/1
33.84475/148

= 430.4807
0.2286807

= 1882.453

From the output, the F-Statistic is 1882.



Example 1: Calculating the p-value by hand

p-value is
probability(F > f ), where F ∼ F1,148

pval = pf(1882.453,1,148,lower.tail = FALSE)

From the output, the p-value is < 2.2e-16 (which holds)

Conclusion
Since the p-value < 0.05 (and 0.01), assuming our significance level us
1%, we reject the null hypothesis and conclude that atleast one of the
coefficients is non-zero. Thus, we pick the linear model with the petal
width.



Lab Activity 1: Null mean model in R

Recall the GPA dataset from Hw10 Q1

gpa <- read.table("https://ionides.github.io/401f18/hw/hw10/gpa.txt", header = TRUE)
head(gpa)

## ID GPA High_School ACT Year
## 1 1 0.98 61 20 1996
## 2 2 1.13 84 20 1996
## 3 3 1.25 74 19 1996
## 4 4 1.32 95 23 1996
## 5 5 1.48 77 28 1996
## 6 6 1.57 47 23 1996



Lab Activity 1: Null mean model in R

We fit the following linear model
lm_gpa <- lm(GPA~High_School+ACT+factor(Year),data=gpa)

-Fit the model in R
- Write the null and alt hypothesis for the F-test performed in the lm()
summary
- Identify the F-statistic and P-value in the output
- Compare this by manually calculating the p-value
- State your conclusion (based on this, which variables would you consider
including in your linear model)



Lab Activity 1: Null mean model in R

We fit the following linear model
lm_gpa <- lm(GPA~High_School+ACT+factor(Year),data=gpa)

I Fit the model in R

lm_gpa <- lm(GPA~High_School+ACT+factor(Year),data=gpa)

I Write the null and alt hypothesis for the F-test performed in the lm()
summary

I H0 : GPA = β0(constant) + ε
I Ha : GPA = β0 + β1High_School + β2ACT + β3 × (1997) + β4 ×

(1998) + β5 × (1999) + β6 × (2000) + ε
where atleast some βi 6= 0



Lab Activity 1: Null mean model in R
summary(lm_gpa)

##
## Call:
## lm(formula = GPA ~ High_School + ACT + factor(Year), data = gpa)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.15048 -0.28873 0.07655 0.39619 1.30415
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.217874 0.144598 8.422 < 2e-16 ***
## High_School 0.010124 0.001285 7.878 1.28e-14 ***
## ACT 0.037188 0.005951 6.248 7.21e-10 ***
## factor(Year)1997 0.083657 0.068816 1.216 0.2245
## factor(Year)1998 0.115339 0.066158 1.743 0.0817 .
## factor(Year)1999 0.080071 0.067475 1.187 0.2358
## factor(Year)2000 0.056007 0.068013 0.823 0.4105
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5674 on 698 degrees of freedom
## Multiple R-squared: 0.2071, Adjusted R-squared: 0.2003
## F-statistic: 30.39 on 6 and 698 DF, p-value: < 2.2e-16



Lab Activity 1: Null mean model in R
I Compare this by manually calculating the p-value

RSS_a <- sum(residuals(lm_gpa)^2)
RSS_0 <- sum((gpa$GPA - mean(gpa$GPA))**2)

## RSS_0: 283.4484 ; RSS_a: 224.7415 ; n: 705 ; q: 7

f = (RSS0 − RSSa)/d
RSSa/(n − q) = (283.4484 − 224.7415)/6

224.7415/698 = 9.784483
0.3219792 = 30.38856

p-value: is the P(F > f ) where F ∼ F6,698

pf(30.38856,6,698,lower.tail = FALSE)

## [1] 1.795986e-32



Lab Activity 1: Null mean model in R

I Conclusion: based on this, which variables would you consider
including in your linear model?

I Since the p-value is extremely small, we reject the null hypothesis and
conclude that atleast some of the covariates are important

I Looking at the summary table of lm_gpa, we would include
High_School,ACT.
Do you agree? Why/ why not?



Lab Acitivity 2: Anova

For the iris data in Lab Activity 1, we saw that we should include
Petal.Width while modelling Petal.Length. Let us evaluate whether to
include species or not.

Let H0 be the model consisting of only the Petal.Width and let Ha be
the extended model that includes Petal.Width as well as species.

I Write the Null and Alt hypothesis for this test and fit it in R
I Compute the F-statistic (by hand) for the model mentioned above.

(Use the output from the fitted models above)
I Compare this with the anova() output
I Find the p-value and draw your conclusion



Lab Acitivity 2: Anova (Establishing the hypothesis)

I H0 : Petal .Length = β1 × (Petal .Width) + β0 + ε
I Ha : Petal .Length =
β1×Petal .Width+β2×Speciesversicolor+β3×Speciesverginica+β0+ε

Fitting the models in R

lm_iris0 <- lm(Petal.Length~Petal.Width, data=iris)
lm_iris1 <- lm(Petal.Length~Petal.Width+Species, data=iris)



Lab Acitivity 2: Anova (F-Statistic by hand)

We know that f = (RSS0−RSSa)/d
RSSa/(n−q)

RSS_0 <- sum(residuals(lm_iris0)^2)
RSS_a <- sum(residuals(lm_iris1)^2)
n <- nrow(model.matrix(lm_iris1))
q <- ncol(model.matrix(lm_iris1))
d <- ncol(model.matrix(lm_iris1)) - ncol(model.matrix(lm_iris0))
cat("RSS_0:",RSS_0,"; RSS_a:",RSS_a,"; d:",d,"; n-q:",n-q)

## RSS_0: 33.84475 ; RSS_a: 20.83344 ; d: 2 ; n-q: 146

Plugging this into the formula, we have

f = (33.84475 − 20.83344)/2
20.83344/146 = 13.01131/2

0.1426948 = 6.505655
0.1426948 = 45.5914



Lab Acitivity 2: Anova (comparing with R output)
From the previous slide,

## RSS_0: 33.84 ; RSS_a: 20.83 ; d: 2 ; n-q: 146

f = (RSS0−RSSa)/d
RSSa/(n−q) = (33.84−20.83)/2

20.83/146 = 13.01/2
0.14 = 6.51

0.14 = 45.591

Compare with R output:

anova(lm_iris1)

## Analysis of Variance Table
##
## Response: Petal.Length
## Df Sum Sq Mean Sq F value Pr(>F)
## Petal.Width 1 430.48 430.48 3016.792 < 2.2e-16 ***
## Species 2 13.01 6.51 45.591 4.137e-16 ***
## Residuals 146 20.83 0.14
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Lab Acitivity 2: Anova (p-value)
p-value is

probability(F > f ), where F ∼ F2,146

pval = pf(45.591,2,146,lower.tail = FALSE); pval

## [1] 4.138018e-16

Compare with R output:

anova(lm1)

## Analysis of Variance Table
##
## Response: Petal.Length
## Df Sum Sq Mean Sq F value Pr(>F)
## Petal.Width 1 430.48 430.48 1882.5 < 2.2e-16 ***
## Residuals 148 33.84 0.23
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Lab Acitivity 2: Anova (conclusion)

Since our p-value is very small (<0.01), we reject the null hypothesis and
pick the model corresponding to the alternate hypothesis. That is, we
chose to include species in our model.



Note on Anova

Anova checks for additional variables sequentially. That is,

I for the linear model y~a+b
H0 : y~a and Ha : y~a+b
i.e. checking whether to include additional variable b

I for the linear model y~b+a
H0 : y~b and Ha : y~b+a
i.e. checking whether to include additional variable a

I for the linear model y~a+b+c there will be two tests:
I H0 : y~a Ha : y~a+b

i.e. checking whether to include additional variable b
I H0 : y~a+b Ha : y~a+b+c

i.e. checking whether to include additional variable c



F-Test and T-test
When we evaluate the importance of a single variable (i.e. when d = 1 in
the F-test), then the F-test is equivalent to the t-test. That is, if T ∼ Td

and F ∼ F1,d , then T 2 has the same distribution as F . i.e. T 2
d

d= F1,d

Check using R

df=10 # Fix degrees of freedom of t distribution

for(x in c(1,5,16,25)){
print(c(pf(x,1,df), pt(sqrt(x),df)-pt(-sqrt(x),df)))}

## [1] 0.6591069 0.6591069
## [1] 0.9506678 0.9506678
## [1] 0.9974817 0.9974817
## [1] 0.9994627 0.9994627

Since,
pf(x,1,df2=df) = P(F<x) = P(T 2<x) = P(-x < T < x)

= P(T < x) - P(T< x) = pf(x,df) - pf(x,df)



Goodness of fit

This describes how well a model fits the data. We have seen the following
methods:

I F tests
I R Squared
I Adj R Squared



R-Squared Statistic

R2 = 1 − RSS
TSS = TSS − RSS

TSS
where RSS = Residual sum of squares =

∑n
i=1 yi − ŷi

TSS = Total sum of squares =
∑n

i=1 yi − ȳ , ȳ = 1
n

∑n
i=1 yi

I R2 is the square of the correlation between the data and the fitted
values.

I It is sometimes described as the fraction of the variation in the data
explained by the linear model.

I This compares the residual sum of squares under the full model with
the residual sum of squares under a model with a constant mean.



Drawbacks of R-Squared

I Higher R-Squared is better
I Note that R-Squared always increases upon increasing the number of

variables in the model. So, it will always select bigger models.
I One way to penalize R2 is by using Adjusted R2 instead



Adjusted R-Squared

R2
adj = 1 − RSS/(n − p)

TSS/(n − 1)

I Dividing by degrees of freedom is similar to F-test

R2 vs F-Test

I Recall: The F test compares a full model with a model that omits
specific selected explanatory variables.

I F Test can only be applied when we have nested models.
I When the models are not nested, we can compare them using R2

adj
instead.



Model Selection

I Model selection is the problem of selecting the best model from a
group of candidate models, given data.

I Model selection techniques try to balance the goodness of fit and
complexity of the candidate models.

I In general, increasing complexity (number of variables) increases the
variance of the model which is not desired. Hence, we want to find
the smallest model which best fits our data.

I Goodness of fit measures (such as R2
adj , AIC, BIC) are tools to help us

find the best model for our data.



Exit ticket

I [Link between lm() and anova()] How can you get the F-test that is
being done in the lm() output in Example 1 using anova()? (Hint:
What are the null and alt linear models in the LB1 F-test? The input
of the anova() function is always the bigger linear model - which is
the alternate model)

I Assume you fit the linear model y~a+b+c, i.e. the linear model here is
y = β1 × a + β2 × b + β3 × c + ε where y is the outcome variable
and a, b, c are covariates.

I Write down the null and alt hypothesis corresponding to the
F-statistic in the lm(y~a+b+c) output

I Write down the null and alt hypotheses corresponding to the
F-statistics in the anova(y~a+b+c) output



Exit ticket solutions (Q1)

Recall tha the model in Example 1 was
lm(Petal.Length~Petal.Width, data=iris). In this, the null and
alternate hypotheses are as follows:
H0 : Petal.Length = β0 + ε
Ha : Petal.Length = Petal.Width + ε

The anova command to get the same F-test wiouls be as follows:

anova(lm(Petal.Length~Petal.Width, data=iris))



Exit ticket solutions (Q2)

For lm(y~a+b+c)
H0 : y = β0 + ε
Ha : y = β1 × a + β2 × b + β3 × c + β0 + ε

For anova(y~a+b+c) there are the following two sets of tests:

H0 : y = β1 × a + β0 + ε
Ha : y = β1 × a + β2 × b + β0 + ε
i.e. whether or not to include covariate b in the model

H0 : y = β1 × a + β2 × b + β0 + ε
Ha : y = β1 × a + β2 × b + β3 × c + β0 + ε
i.e. whether or not to include covariate c in the model


