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Outline

I Interpreting Coefficients
I Collinearity
I Interactions



Interpretation: Simple Linear Regression

I Let’s first consider the case with 1 predictor
I Suppose we’ve fit a linear model

yi = b0 + b1xi1 + ei

where, i = 1, . . . , n
I What is the interpretation of the sample coefficient b1?



Interpretation: Simple Linear Regression

I Recall: we interpret b1 as the expected change in our response
variable for every 1 unit increase in our explanatory variable



Example

We consider pitching data for 2015, which we have obtained using
the R package Lahman:

matrix(names(pitchers),nrow = 3,byrow = T)

## [,1] [,2] [,3] [,4]
## [1,] "playerID" "teamID" "W" "L"
## [2,] "G" "GS" "BB" "SO"
## [3,] "ERA" "Kp9" "IPpG" "starter"

For this lab, we will be interested in the last 3 variables: strikeouts
per 9 innings (Kp9), innings pitched per game(IPpG), and a dummy
variable for starter (starter), which is 1 if the pitcher is a starter
and 0 if the pitcher is a reliever.



Example

We fit a model to predict strikeouts per 9 innings (Kp9) using
innings pitched per game(IPpG)

lm_simple = lm(Kp9 ~ IPpG, data = pitchers)
round(summary(lm_simple)$coefficients,4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.3912 0.1880 44.6283 0e+00
## IPpG -0.1937 0.0483 -4.0104 1e-04

How can we interpret the coefficient for IPpG?



Interpretation: Multiple Regression

I Now suppose we include a second predictor, xi2, and instead fit
the model

yi = b0 + b1xi1 + b2xi2 + ei

for i = 1, . . . , n
I Is our interpretation of b1 the same?



Interpretation: Multiple Regression

I The interpretation is different!
I When we include additional predictors, the value of b1 will

change
I We can think of b1 as the expected change in our response

variable for every 1 unit increase in x1 for a fixed value of x2



Example (Continued)

Suppose we now predict strikeouts per 9 innings using innings
pitched per game and an indicator of whether the pitcher is a
starting pitcher

lm_mult = lm(Kp9 ~ IPpG + starter, data = pitchers)
round(summary(lm_mult)$coefficients,4)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.6043 0.2395 31.7452 0
## IPpG 0.9099 0.2210 4.1169 0
## starterStarter -5.4789 1.0720 -5.1109 0



Collinearity

I Collinearity (or Multicollinearity) occurs when explanatory
variables are linearly related to each other

I If we can write one variable as a linear combination of the
other variables, then we have collinearity

I For example, suppose we have the vectors of predictors w, x,
and z, and that w = 2x − 3z. Then the predictors in this case
are collinear



Why is this a problem?

I When we have collinear variables, it becomes impossible to
distinguish between the effects of the variables
I Suppose x1 and x2 are collinear, and that they both have an

effect on y
I When we try to fit the model yi = b0 + b1xi1 + b2xi2 + ei , it is

impossible to tell which value to assign to b1 and which to
assign to b2

I This is exactly the problem we saw when we discussed
over-specified models with factor variables



Example

Recall our baseball pitchers example, where we fit a model
predicting strikeouts per 9 innings using innings pitched per game:

## Estimate Std. Error
## (Intercept) 8.39 0.19
## IPpG -0.19 0.05

Suppose in our data set, we also have a variable “outs per game”
and that we accidentally include it in our model. Since outs are
equal to innings times 3, outs per game and innings per game are
collinear.



Example

I Our sample model is yi = 8.39 − 0.19xi1 + ei where yi is
strikeouts per 9 innings and xi1 is innings pitched per game for
pitcher i .

I These coefficients are the unique least squares solution and
minimize the sum of square residuals

I Let xi2 be outs per game. Because the predictors are collinear
(x2 = 3x1), the model yi = b0 + b1xi1 + b2xi2 + ei does not
have a unique solution!

I There are infinitely many solutions, each of which is just as
“correct” as the others – we can’t tell which value to assign to
b1 and which to b2



Lab Activity (Part 1)
We are interested in studying the weights of grapefruit by type:

## weight type circumference
## 1 8.3 red 11.0
## 2 7.0 red 10.0
## 3 7.5 pink 10.6
## 4 9.0 red 10.2
## 5 6.0 pink 7.0

Let x1 be a dummy variable for red grapefruits, x2 be a dummy
variable for pink grapefruits, and x3 = (11, 10, 10.6, 10.2, 7) be
circumference. Let y = (8.3, 7, 7.5, 9, 6) be the weights of the
grapefruits. For which model(s) would the explanatory variables be
collinear?

1. yi = b0 + b2xi2 + b3xi3 + ei
2. yi = b0 + b1xi1 + b2xi2 + b3xi3 + ei
3. yi = b1xi1 + b2xi2 + b3xi3 + ei
4. yi = b0 + b1xi1 + b3xi3 + b4x2

i3 + ei



Approximate Collinearity

I It is also an issue when variables are close to collinear
I When predictors are approximately collinear, it becomes

difficult to disentangle the associations of the variables with the
outcome variable



Another Way to Think of Collinearity

I Exact collinearity causes the variance of β̂i to be infinite
(because there are infinitely many least squares solutions)

I When variables are close to collinear, the variance is not
infinite, but very high



Why do we care?

I The sample coefficients are the estimates for the true
coefficients

I If the estimates are unreliable, it is difficult to make good
inferences

I For example, with a high variance, we would have large
confidence intervals and it would be hard to tell if the observed
coefficient is statistically significant



Collinearity in R

I When we attempt to fit a model with exact collinearity, R will
recognize that the variables are collinear and drop one of the
variables

pitchers$OpG = 3*pitchers$IPpG
lm_mult = lm(Kp9 ~ IPpG + starter + OpG, data = pitchers)
coef(lm_mult)

## (Intercept) IPpG starterStarter OpG
## 7.6043474 0.9098721 -5.4789241 NA

I If the variables are only approximately collinear, then R will still
fit the model with all variables – we need to be aware that our
coefficient estimates could be unreliable



Example
Almost collinear variables often show up in data sets (especially
when there are many predictors). Let’s examine the data set from
homework 11:

senic = read.table("https://ionides.github.io/401f18/hw/hw11/senic.txt",header = T)
matrix(names(senic),ncol = 3)

## [,1] [,2] [,3]
## [1,] "Hospital" "Culture" "Region"
## [2,] "Length.of.stay" "X.ray" "Patients"
## [3,] "Age" "Beds" "Nurses"
## [4,] "Infection.risk" "Med.school" "Facilities"

We can see there are some variables that appear to measure similar
things. Specifically, patients, beds, and nurses are all measuring the
number of patients in some way.



Example
Using the cor() function, we can obtain the pairwise correlations
for a matrix or data frame. We can use this to verify our hypothesis
above.

cor(senic[,c(7,10,11)])

## Beds Patients Nurses
## Beds 1.0000000 0.9809977 0.9155042
## Patients 0.9809977 1.0000000 0.9078970
## Nurses 0.9155042 0.9078970 1.0000000

We can see that these 3 variables are highly correlated. We will
examine how this approximate collinearity affects the model fit in
the lab ticket.
Note: it is often a good idea to examine the full correlation matrix to see
if there are potential collinearity issues (i.e., using ‘cor(senic)‘ will give all
the pairwise correlations in the data set).



Interaction Terms

I So far, we’ve examined the effects of 1 predictor at a time on
the outcome

I For example, we could answer the question: is the linear
association between strike outs per 9 innings and innings
pitched per game different from 0?

I What if we wanted to examine the effects of 2 predictors
simultaneously?

I For example, we might want to know if the effect of innings
pitched per game on strikeouts per 9 innings is different for
starting and relief pitchers



Interaction Terms

I To accomplish this we use interaction terms: interaction terms
are the product of predictors

I Suppose we have the following model:

yi = b0 + b1xi1 + b2xi2 + b3xi1 × xi2 + ei

where for each i , yi is the strikeouts per 9 innings, xi1 is the
innings pitched per game, xi2 is a dummy variable for a starting
pitcher

I Recall that by including the dummy variable for pitcher type,
we have two different intercepts

I By including the interaction term xi1 × xi2, we have two
different slopes

I How should we interpret b3?



Interaction Terms

I The example above included the interaction between a
continuous and categorical variable

I Interactions can also be done between 2 continuous variables,
as well as 2 categorical variables



Lab Ticket
1. Read in the SENIC data using the following command:

file = "https://ionides.github.io/401f18/hw/hw11/senic.txt"
senic = read.table(file,header = T)

2. Fit two models in R. In both cases, use Infection.risk as
outcome

I Predictors: Beds and Patients
I Predictor: Beds

3. How do coefficients for Beds differ between the two models?
What about the standard errors, t statistics, and p-values?

4. Explain how what you observed in (3) is related to the
approximate collinearity between Beds and Patients


