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License: This material is provided under an MIT license (https://ionides.github.io/401f18/LICENSE)

The questions in this exam concern data you have seen previously in the course on global climate change from
1961 to 2010. Carbon dioxide (CO2) levels in the atmosphere have been increasingly steadily, as recorded by
the measurements taken at Mauna Loa observatory in Hawaii. An increasing trend in CO2 matches increasing
trends in both global economic activity and the global population, as well as many other socioeconomic
phenomena. However, on shorter timescales, fluctuating geophysical processes such as volcanic activity and
the El Nino Southern Oscillation (ENSO) may be important.
head(climate,3)

## Year CO2 GDP Pop ENSO Volcanic Emissions
## 1 1961 317.64 7.54 3.069 -0.2322 0.0024 9.5
## 2 1962 318.45 7.97 3.123 -0.7650 0.0024 9.8
## 3 1963 318.99 8.38 3.189 -0.1629 1.8454 10.4

• CO2: Mean annual concentration of atmospheric CO2 (parts per million by volume) at Mauna Loa.

• GDP: world gross domestic product reported by the World Bank.

• Pop: world population, in billions, reported by the World Bank.

• ENSO: an El Nino Southern Oscillation index from NOAA.

• Volcanic: an index of monthly estimated sulfate aerosols derived from NOAA.

• Emissions: estimated emissions of CO2 (million Kt) reported by the World Bank.

Throughout the exam, you may write yi for the CO2 concentration on the ith row of the data, ti for the
corresponding year, gi for the world GDP, and mi for the emissions index. The other variables will not be
involved in models we consider here. We start by detrending the global CO2 data, fitting a quadratic trend:
lm1 <- lm(CO2~Year+I(Year^2),data=climate)
summary(lm1)

##
## Call:
## lm(formula = CO2 ~ Year + I(Year^2), data = climate)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.10575 -0.54413 -0.00216 0.40201 1.56418
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.233e+04 1.993e+03 21.24 <2e-16 ***
## Year -4.377e+01 2.008e+00 -21.80 <2e-16 ***
## I(Year^2) 1.140e-02 5.056e-04 22.54 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6655 on 47 degrees of freedom
## Multiple R-squared: 0.9991, Adjusted R-squared: 0.9991
## F-statistic: 2.625e+04 on 2 and 47 DF, p-value: < 2.2e-16
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1 [5 points]. Write down the probability model in subscript form for the quadratic trend fitted by lm1 above.
Include all details.

Solution:

Yi = β0 + β1ti + β2t
2
i + εi, i = 1, . . . , n

where n = 50 and ε1, . . . , εn ∼ iid normal(0, σ). Here, Yi models CO2 levels for year i, and β0, β1, β2 are
unknown constants.

Summary of grade scheme: 1 point for the covariates (1, ti, t2i ). 1 point for definition of εi. 1 point for β,
with explanation. 1 point for Yi. 1 point for n.

2 [12 points]. Consider the F test from summary(lm1) above.

(a) [2 points]. What are the null and alternative hypotheses for this F test? You can use notation that you
defined in Question 1.

Solution:

H0 : The probability model from Question 1 holds with β1 = 0 and β2 = 0.

Ha : The probability model from Question 1 holds with β1 and β2 unconstrained.

Summary of grade scheme: 1 point for each hypothesis

(b) [4 points]. Explain the construction of the sample F-statistic in summary(lm1). You should include
explanation of why it is on 2 and 47 DF.

Solution:

Let RSSa be the residual sum of squares under Ha, that is, RSSa =
∑n

i=1 e
2
i where e1, . . . en are the residuals

from fitting
yi = b0 + b1ti + b2t

2
i + ei, i = 1, . . . , n

with b0, b1 and b2 chosen by least squares. Ha fits 3 parameters so has q = 50 − 3 = 47 residual degrees of
freedom.

Let RSS0 be the residual sum of squares under H0, that is, fitting

yi = b0 + ei, i = 1, . . . , n

with b0 chosen by least squares. H0 fits 1 parameter so has p = 50 − 1 = 49 residual degrees of freedom.

The sample F statistic is
f = (RSS0 − RSSa)/(p− q)

RSSa/q

with degrees of freedom being p− q = 2 and q = 47.

Summary of grade scheme: 1 point explaining each of RSSa and RSS0, either in words or as a formula.
1 point for the formula for the sample f statistic. 1 point for explaining the 2 and 47 in terms of residual
degrees of freedom

(c) [4 points]. Explain how the p-value on the F-statistic line of the summary is calculated. Specifically,
start by giving the general definition of a p-value and then explain how the definition applies to this
specific test. Your explanation will likely include the phrases “sample test statistic”, “model-generated
test statistic”, and “distribution under the null hypothesis”.

Solution:

The p-value is the probability that a model-generated test statistic takes a more extreme value than the
sample test statistic under the null hypothesis. In this case, pval = P(F > f) where f is the sample F
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statistic from 2(b) and F is a model-generated F statistic under the probability model corresponding to the
hypothesis H0. F is a random variable having the F-distribution on 2 and 47 degrees of freedom.

Summary of grade scheme: 2 points for the general definition (1 point if showing some comprehension
but also a non-trivial error). 1 point for identifying the sample test statistic, 1 point for the model-generated
distribution under H0.

(d) [2 points]. What do you conclude from this F test?

Solution:

The p-value is lower than any reasonable significance level. We clearly reject the null hypothesis and conclude
that a constant expected value plus measurement error is not a good model for the data. In this case, the
conclusion is not surprising. We are fitting the model in order to estimate the trend and subtract it. We are
not particulary interested in the possibility that there is actually no trend.

Summary of grade scheme: 1 point rejecting. 1 point for some sensible interpretation of what this means
in the context of this particular scientific analysis.

The fitted values from lm1 are plotted against time in the following plot:
plot(CO2~Year, data=climate)
lines(climate$Year,lm1$fitted)
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3 [3 points]. Looking at the fitted value plot, do you think the model is a good fit? Also, describe two
additional analyses you would carry out to diagose misspecification in model lm1.

Solution:

The data follow the curve approximately, but we can nevertheless see long sequences of measurements all
above or below the fitted line. This is inconsistent with the independent measurement errors in our probability
model. Superficially, the curve seems like a good fit (and credit was given for noticing this) but “fit” formally
means how well the data are modeled by the proposed probability model.

To see this pattern more clearly, we could make (i) a time plot of the residuals; (ii) a lag plot (plotting ei

against the ei−1); (iii) look for improved model fit for a different model (e.g., try including t3i in the model
and see if we obtain a statistically significant coefficient).

Summary of grade scheme: 1 point for a sensible comment about model fit; 2 × 1 points for two sensible
additional analyses. The analyses should be clearly described, so just saying “residual plot” is not sufficient.

4 [5 points]. Consider the multiple R-squared statistic from summary(lm1) above.

(a) [1 point]. Describe how this R2 statistic is calculated. Your answer can use notation, including sums of
squares, that you have defined in answers to previous questions.
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Solution:

R2 = 1 − RSSa/RSS0 using the notation of 2(b).

Summary of grade scheme: 1 point for the definition.

(b) [2 points]. To what extent do you agree with the statement: “Because the multiple R-squared statistic
is close to 1, the model fits well.” Explain what you can and cannot generally conclude from a high R2

about model specification, and then put this in the context of the specific analysis.

Solution:

The R2 statistic close to 1 says that the model fits much better than a simple constant mean model. It does
not say whether or not there is room for additional model improvement. In situations like this where there is
a clear trend, R2 will always be high even when the model is significantly flawed, so R2 is not a good way to
assess if the model fits well.

Summary of grade scheme: 1 point for something sensible about what you can learn from R2, 1 point for
something sensible about a model fitting issue you can’t learn from it.

(c) [2 points]. Explain why it may be preferable to look at the Adjusted R-squared statistic rather than
the Multiple R-squared for some particular purpose.

Solution:

The unadjusted R2 statistic cannot decrease when an additional explanatory variable is added to a linear
model. This makes it hard to use comparison of R2 values for model selection. Adjusted R2 divides RSSa

and RSS0 by the corresponding residual degrees of freedom, penalizing RSSa for its additional parameters.

Summary of grade scheme: Maximum 2 of the following. 1 point for “model selection”. 1 point for “R2

doesn’t decrease”. 1 point for showing knowledge of the definitions of adjusted R2 and R2. 1 point for any
other relevant and correct comment.

5 [7 points]. This question concerns a prediction interval. To work with prediction intervals, it is useful to
first write down the model in matrix form.

(a) [3 points]. Define X and β such that the probability model you wrote in Question 1 has matrix form
Y = Xβ + ε. You can assume that Y = (Y1, . . . , Yn) and ε = (ε1, . . . , εn) for a suitable choice of n.

Solution:

Set Xn×3 = [ 1 t t2 ] with 1 = (1, . . . , 1), t = (t1, . . . , tn) and t2 = (t21, . . . , t2n). Then, set β = (β0, β1, β2) in
the notation of Question 1.

Summary of grade scheme: 1 point for each of X and β. It is acceptable to write out X using . . . . 1
extra point if notation is correctly used (e.g., underscore for vectors, blackboard bold for matrices) and is
consistent with notation used earlier.

(b) [4 points]. Explain how to find a 95% prediction interval for CO2 in 2018 using the data and the
probability model fitted by lm1. You can use mathematical notation developed in part (a). A strong
answer should demonstrate understanding of what a 95% prediction interval is and how it is constructed.

Hint: You will likely want to find a row vector x∗ such that Y ∗ = x∗β + ε∗ is a random variable modeling
a new measurement with a new measurement error ε∗ independent of ε1, . . . , εn. You may also use in your
solution the notation Ŷ ∗ = x∗β̂ for a model-generated fitted value at x∗,

Solution:

The sample version in matrix form is
y = Xb + e,

where b = (b0, b1, b2) is a vector of least squares coefficients. Now, set x∗ = (1, 2018, 20182). Using the
notation in the hint, a 95% prediction interval is an interval

[ŷ∗ − 1.96SEpred, ŷ
∗ + 1.96SEpred]
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constructed so that Y ∗ falls within

[Ŷ ∗ − 1.96SDpred, Ŷ
∗ + 1.96SDpred]

with probability 0.95, where SEpred is an estimate of SDpred. In words, if the model is right the 95% prediction
interval at x∗ covers a new observation at x∗ with probability 0.95. The variance of Y ∗ − Ŷ ∗ is

SD2
pred = σ2x∗(XTX

)−1x∗T + σ2

and so we take
SEpred = s

√
x∗
(
XTX

)−1x∗T + 1.

Summary of grade scheme: 1 point for x∗. 1 point for SEpred. 1 point for putting together the prediction
interval. 1 point for a correct explanation of what a prediction interval is, either in words or as a probability
statement. No credit was assigned for specification of s

Now we can study the relationships between the detrended variables. Here, we are just going to look at
global CO2 , GDP and emissions. Rather than detrending with a quadratic model, we will detrend using the
local linear regression function loess() which was found to work well in the health economics example in
the notes. For the current purposes, we don’t need to understand details about how loess() works. We put
a ‘d’ in front of each detrended variable name in the following code.
climate$dCO2 <- resid(loess(CO2~Year,data=climate,span=0.5))
climate$dGDP <- resid(loess(GDP~Year,data=climate,span=0.5))
climate$dEmissions <- resid(loess(Emissions~Year,data=climate,span=0.5))
lm2 <- lm(dCO2~dGDP+dEmissions,data=climate)
summary(lm2)$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.01254947 0.04945508 0.2537549 0.8007918
## dGDP 0.30173830 0.18793113 1.6055791 0.1150654
## dEmissions 0.21229065 0.15310970 1.3865265 0.1721283
lm3 <- lm(dCO2~dEmissions,data=climate)
summary(lm3)$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.01760106 0.05015955 0.3509015 0.727197709
## dEmissions 0.38387257 0.11143351 3.4448577 0.001195971

6 [3 points]. The coefficient for detrended global CO2 emissions has much higher statistical significance in
lm3 than lm2. Explain this fact.

Solution. This arises because dCO2 and dEmissions have high sample correlation, so they are close to
collinear. When both are in the model, neither is significant because the data can’t determine if one should
be chosen over the other. When detrended emissions is used as the only explanatory variable in the model,
there is strong evidence for an association with fluctuations in CO2.

Quite a few students discussed the order of the variables in the summary table. In a table of least squares
coefficients and their standard errors, order is unimportant. In an ANOVA table, order can be important.

Summary of grade scheme: 1 point for mentioning collinearity. 1 point for describing how collinearity
affects standard errors. 1 point for a relevant comment relating this back to the data analysis.

7 [3 points]. To what extent does the analysis above demonstrate that a major cause of fluctuations around
the trend in global CO2 levels is fluctuations in CO2 emissions?

Solution. This is an observational study, so an association does not imply a causal relationship unless one
can rule out the possibility of confounding variables, that is, variables which influence both the explanatory
variable and the response. We know that fluctuations in emissions are correlated with fluctuations in GDP.
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Therefore, any other activity associated with economic activity (cutting down rainforest; emissions of some
other gas that interacts via atmspheric chemistry to lead to CO2. The alternative confounding explanations
don’t seem very plausible, but we are not environmental experts. It is plausible to claim based on common
knowledge that there are no substantial confounders for the role of emissions: most pathways by which the
economy affects CO2 will be via emissions.

Summary of grade scheme: At most 3 points from the following. 1 point for “observational”. 1 point for
“confounding”. 1 point for a relevant comment explaining what this means in practice. 1 point for a plausible
example.
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