
Final exam, STATS 401 W18

Name:

UMID:

Instructions

• You have a time allowance of 120 minutes. The exam is closed book and closed notes. Any electronic
devices (including calculators) in your possession must be turned off and remain in a bag on the floor.

• If you need extra paper, please number the pages and put your name and UMID on each page.

• Responses will be assessed on quality of explanation as well as whether they lead to a correct answer.

• You may use the following formulas. Proper use of these formulas may involve making appropriate
definitions of the necessary quantities.

(1) b =
(
X>X

)−1 X>y

(2) Var(β̂) = σ2(X>X)−1

(3) Var(AY) = AVar(Y)A>

(4) Var(X) = E
[
(X − E[X])2] = E[X2] −

(
E[X]

)2

(5) Cov(X,Y ) = E
[(
X − E[X]

)(
Y − E[Y ]

)]
= E[XY ] − E[X] E[Y ]

(6) The binomial (n, p) distribution has mean np and variance np(1 − p).

(7) f = (RSS0 − RSSa)/(q − p)
RSSa/(n− q) .

Problem Points Your Score

1 8

2 4

3 6

4 10

5 8

6 8

Total 44
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All the questions in this exam refer to the field goal kicking data provided in the R dataframe goals. These
data record the results of field goal attempts for the kickers who played in all the 2002–2006 National Football
League (NFL) seasons. The primary question of interest is whether a kicker who exceeds expectations in one
season is likely to do better, or worse, than expected in the following season.

Name. The name of the field goal kicker.

Yeart. The year t corresponding to the row in the dataset.

Teamt. An abbreviation of the name of the team for the kicker in year t.

FGAt. Field goal attempts in year t.

FGt. Percentage of field goal attempts that were successful in year t.

Team.t.1. An abbreviation of the name of the team for the kicker in year t− 1.

FGAtM1. Field goal attempts in year t− 1.

FGtM1. Percentage of field goal attempts that were successful in year t− 1.

Throughout the exam, you may write yi for the field goal percentage recorded on the ith row of the data file,
for i = 1, . . . , n with n = 4k corresponding to four data points on eack of k = 19 kickers. You may also write
yij for the jth measurement on kicker i, for i = 1, . . . , k and j = 1, . . . , 4. You may use this notation without
explanation. Other additional notation you use should be defined as appropriate.

head(goals)

## Name Yeart Teamt FGAt FGt Team.t.1. FGAtM1 FGtM1
## 1 Adam Vinatieri 2003 NE 34 73.5 NE 30 90.0
## 2 Adam Vinatieri 2004 NE 33 93.9 NE 34 73.5
## 3 Adam Vinatieri 2005 NE 25 80.0 NE 33 93.9
## 4 Adam Vinatieri 2006 IND 19 89.4 NE 25 80.0
## 5 David Akers 2003 PHI 29 82.7 PHI 34 88.2
## 6 David Akers 2004 PHI 32 84.3 PHI 29 82.7

1. Factors and their coding in R.

We will start the analysis by fitting a basic model, seen earlier in class and homework, specified in R code as

lm1 <- lm(FGt~Name+FGtM1, data=goals)

(a) [5 points]. Write down the sample model fitted by lm1 in subscript form.

Solution.
yij = m+ ai + bxij + eij

where xij is the previous year kicking average for the jth measurement on kicker i, for i = 1, . . . , k and
j = 1, . . . , 4, and eij is the residual error. m is the estimated intercept, ai is an additive effect for kicker i,
with a1 = 0. b is the estimated coefficient for the effect of the previous year. All coefficients are estimated by
least squares.

(b) [3 points]. Write down the first 6 rows of the design matrix for lm1. You may use dots (· · ·) to abbreviate
entries following a repeated pattern, but if you do this it must be clear what they represent.

Solution.
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## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
## [1,] 1 0 0 0 0 0 0 0 0 0 0 0 0
## [2,] 1 0 0 0 0 0 0 0 0 0 0 0 0
## [3,] 1 0 0 0 0 0 0 0 0 0 0 0 0
## [4,] 1 0 0 0 0 0 0 0 0 0 0 0 0
## [5,] 1 1 0 0 0 0 0 0 0 0 0 0 0
## [6,] 1 1 0 0 0 0 0 0 0 0 0 0 0
## [,14] [,15] [,16] [,17] [,18] [,19] [,20]
## [1,] 0 0 0 0 0 0 90.0
## [2,] 0 0 0 0 0 0 73.5
## [3,] 0 0 0 0 0 0 93.9
## [4,] 0 0 0 0 0 0 80.0
## [5,] 0 0 0 0 0 0 88.2
## [6,] 0 0 0 0 0 0 82.7

coef(summary(lm1))["FGtM1",]

## Estimate Std. Error t value Pr(>|t|)
## -5.037008e-01 1.127613e-01 -4.466963e+00 3.899977e-05

2. Model interpretation. [4 points].

A direct interpretation of the estimated coefficient for the previous year field goal percentage from lm1 (shown
above) is that field goal kickers who kick well one season tend to kick relatively poorly the next season.
Explain why general principles for the interpretation of observational studies should make us cautious about
jumping to that conclusion.

Solution. All observational studies can be subject to confounding variables, which are unmeasured
phenomena that affect both the explanatory variables and the response. A particulary type of confounding is
selection bias. Here, a possible source of selection bias is that these kickers were selected to be those who
held their job for 5 consecutive years, so they may not be representative of all kickers. In particular, those
who held their job are more likely to have successful earlier seasons, whether by luck or by skill. Another
potential confounding variable is coaching strategies. The observational study can readily infer association
but not so easily establish the causal mechanism.

3. Model diagnostics.

One possible explanation behind some, or all, of the negative association between kicking percentages in
subsequent years could be that coaches who have lower expectation of the abilities of the kicker tend to
refrain from hard field goal attempts the following season, pushing up the next season’s success rate average.
Correspondingly, a coach emboldened by successful kicking may follow this up with choosing to kick in
challenging situations. To investigate this, we can consider a linear model where the number of field goal
attempts in year t is explained by the field goal success rate in year t− 1.

lm2 <- lm(FGAt~Name+FGtM1, data=goals)
anova(lm2)

## Analysis of Variance Table
##
## Response: FGAt
## Df Sum Sq Mean Sq F value Pr(>F)
## Name 18 623.0 34.613 0.5027 0.9459
## FGtM1 1 1.8 1.823 0.0265 0.8713
## Residuals 56 3855.7 68.851
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(a) [4 points]. Interpret the results of this fitted linear model in the context of question of primary interest
in the data analysis. You are not asked to give all the details for a hypothesis test or confidence interval.
That will come in later questions; here, it is enough to describe briefly the statistical reasoning behind
your interpretation.

Solution. According to this ANOVA table, field goal percentage in the previous year does not significantly
help in predicting subsequent field goal attempts (F test, p-value = 0.871). Also, kicker does not significantly
predict field goal attempts (F test, p-value = 0.946). The identity of the kicker is closely related to the
identity of the team, so we also infer that teams do not vary substantially on their field goal kicking strategies.
It appears that coaching strategies cannot substantially explain the negative association of primary interest
to this investigation.

We should always investigate the data graphically in addition to fitting a model.

plot(resid(lm2)~FGtM1, data=goals)
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(b) [2 points]. Comment on your interpretation of the above residual plot, and how it relates to your answer
to (a).

Solution. There is no clear nonlinear pattern. The residuals are scattered in a football shape parallel to the
x-axis, consistent with the model. The football shape is not particularly clear with relatively few data points:
a simulation experiment would confirm that these residuals are consistent with an independent identically
distributed normal model. What we mean by “football-shaped” is bivariate normally distributed, and having
the football parallel to the axes corresponds to independence. This supports the finding from (a), since we
can’t tell without looking at the data whether there are serious model violations that could make the ANOVA
table in (a) unreliable.

One other possibility proposed in class to explain the unexpected results of our first model is that kickers
must do well in the earlier years included in the dataset, since they necessarily maintained their position on
the team throughout the 2002–2006 interval. The following model investigated the evidence for the magnitude
of this effect.

lm3 <- lm(FGt~Name+FGtM1+factor(Yeart), data=goals)
anova(lm3)

## Analysis of Variance Table
##
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## Response: FGt
## Df Sum Sq Mean Sq F value Pr(>F)
## Name 18 1569.68 87.20 2.1577 0.01573 *
## FGtM1 1 769.99 769.99 19.0520 5.923e-05 ***
## factor(Yeart) 3 18.97 6.32 0.1564 0.92508
## Residuals 53 2141.99 40.41
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4. An investigation using an F-test.

(a) [5 points]. Write out in full, using subscript form, the alternative hypothesis, Ha, for using lm3 to test
whether the field goal average changes over time.

Solution. Under the alternative hypothesis, the observation yij is modeled as being generated according to
a random variable Yij constructed according to the equation

Yij = µ+ αi + βj + γxij + εij .

Here, xij is the previous year kicking average for the jth measurement on kicker i, for i = 1, . . . , k and
j = 1, . . . , 4. The measurement error εij is a normally distributed random variable with mean 0 and standard
deviation σ, independent of the other error terms. µ is the intercept, αi is an additive effect for kicker i, and
βj is an additive effect for year j. We set α1 = β1 = 0 to avoid colinearity. γ is the coefficient for the effect of
last year’s kicking average.

(b) [5 points]. Carry out an F test of the hypothesis Ha against a suitably constructed null hypothesis, H0,
giving explanation of how this test is constructed. What do you conclude?

Solution. The null hypothesis here is H0 : βj = 0 for
The test statistic is

f = (RSS0 − RSSa)/d
RSSa/(n− q) ,

where d is the difference in degrees of freedom between the null and alternative hypotheses (here, d = 3) and
q is the degrees of freedom in the alternative hypothesis (here, q = 1 + 18 + 1 + 3 = 23), RSS0 is the residual
sum of squares under the null hypothesis, and RSSa is the residual sum of squares under the alternative. A
model-generated version F for this statistic under the null hypothesis has the F distribution on d and n− q
degrees of freedom. From the R output, the p-value is P(F > f) = 0.925. The test result is insignificant
at the usual 0.05 level. We infer that there is no evidence supporting systematic differences between years
in field goal kicking percentage. This is evidence against a role for selection bias in the observed negative
estimated value of the coefficient γ.

5. A confidence interval.

(a) [5 points]. Using the model in Question 1 and the R output on lm1, explain how R obtains the estimated
coefficient of goal kicking percentage in year t− 1 as a predictor of goal kicking percentage in year t.
Also, using the probability model implicitly assumed in the analysis of Question 1, explain how to the
construct a 95% confidence interval for the true coefficient.

Solution. b is computed as a component of
(
XXT

)−1XTy. According to the implicit probability model for
Question~1, the sample coefficient b = −0.504 is an unbiased estimate of a true coefficient β with variance
given by the corresponding diagonal term of σ2(XXT

)−1 where σ is the standard deviation of the measurement
error model and X is the design matrix. We estimate σ2 by s2 = 1

n−p

∑
i=1(yi − ŷi)2 where ŷi is the fitted

5



value and p = 20 is the degrees of freedom. This gives us a standard error which, from the R output provided,
is

SE = 0.113.

Using a normal approximation, a 95% confidence interval is [b− 1.96 × SE, b+ 1.96 × SE].

(b) [3 points]. A confidence interval is only as trustworthy as the model that it is derived from. Explain to
what extent you feel the confidence interval is justified based on the analysis available in this exam.
Propose any supplementary analysis you would do to strengthen this inference.

The model diagnostics we have seen in questions 2, 3 and 4 all support the linear model of question 1. This
gives some support for the resulting confidence interval. We didn’t check normality: the scatter of points in
the residual plot suggests that there are no outliers and normality is a reasonable approximation. Normality
is more critical for prediction than for confidence intervals on coefficients, since in the latter case a cental
limit theorem applies: the coefficient estimate is a certain average of all the data points, and averages can be
expected to have the central limit property that they are well approximated by a normal distribution.

6. Collinearity.

Suppose someone suggests that the rest of the team may also be an important component of field goal success.
This leads you to try adding to the model a factor for the team in year t with the following consequence.

lm4 <- lm(FGt~Name+Teamt+FGtM1, data=goals)
summary(lm4)

##
## Call:
## lm(formula = FGt ~ Name + Teamt + FGtM1, data = goals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.0807 -3.2025 -0.4982 4.0692 13.2308
##
## Coefficients: (17 not defined because of singularities)
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 126.7703 10.6630 11.889 < 2e-16 ***
## NameDavid Akers -3.6917 4.7822 -0.772 0.4436
## NameJason Elam -2.0890 4.8118 -0.434 0.6660
## NameJason Hanson 3.1180 4.7613 0.655 0.5154
## NameJay Feely -5.2243 5.7213 -0.913 0.3654
## NameJeff Reed -7.3385 4.7801 -1.535 0.1308
## NameJeff Wilkins 3.2869 4.7674 0.689 0.4936
## NameJohn Carney -5.0437 4.8041 -1.050 0.2986
## NameJohn Hall -7.5838 4.8506 -1.563 0.1240
## NameKris Brown -12.4942 4.9275 -2.536 0.0143 *
## NameMatt Stover 9.7595 4.7649 2.048 0.0456 *
## NameMike Vanderjagt 3.6936 7.2192 0.512 0.6111
## NameNeil Rackers -5.6610 4.7785 -1.185 0.2415
## NameOlindo Mare -12.1338 4.8506 -2.501 0.0156 *
## NamePhil Dawson 4.5452 4.7621 0.954 0.3443
## NameRian Lindell -3.9423 4.8153 -0.819 0.4167
## NameRyan Longwell -5.2597 7.3294 -0.718 0.4762
## NameSebastian Janikowski -3.0388 4.7995 -0.633 0.5294
## NameShayne Graham 3.1111 4.7677 0.653 0.5169
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## TeamtATL -8.4916 6.2682 -1.355 0.1814
## TeamtBAL NA NA NA NA
## TeamtBUF NA NA NA NA
## TeamtCIN NA NA NA NA
## TeamtCLE NA NA NA NA
## TeamtDAL -2.9588 10.1814 -0.291 0.7725
## TeamtDEN NA NA NA NA
## TeamtDET NA NA NA NA
## TeamtGB 5.3209 7.3222 0.727 0.4707
## TeamtHOU NA NA NA NA
## TeamtIND 3.9384 7.2302 0.545 0.5883
## TeamtMIA NA NA NA NA
## TeamtMIN NA NA NA NA
## TeamtNE NA NA NA NA
## TeamtNO NA NA NA NA
## TeamtNYG NA NA NA NA
## TeamtOAK NA NA NA NA
## TeamtPHI NA NA NA NA
## TeamtPIT NA NA NA NA
## TeamtSTL NA NA NA NA
## TeamtWAS NA NA NA NA
## FGtM1 -0.5164 0.1170 -4.414 5.15e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.234 on 52 degrees of freedom
## Multiple R-squared: 0.551, Adjusted R-squared: 0.3524
## F-statistic: 2.774 on 23 and 52 DF, p-value: 0.00117

(a) [4 points]. Explain why all but four of the coefficients for the team factors take value NA.

Solution. NA estimates occur when the columns of the design matrix X are collinear. Here, we can expect
considerable collinearity between the team and the kicker. If a kicker stays with the same team throughout
the 4 years of the dataset, the effect of this team and this kicker are indistinguishable. This is equivalent
to the corresponding columns of the design matrix being collinear. The effects only become distinguishable
when the kicker changes team, and this apparently occurs on only 4 occasions.

The following results show that if we put the kicker into the model first, then the team appears insignificant
from an F test. However, if we put team first then it is significant and kicker becomes insignificant.

anova(lm(FGt~Name+Teamt+FGtM1, data=goals))

## Analysis of Variance Table
##
## Response: FGt
## Df Sum Sq Mean Sq F value Pr(>F)
## Name 18 1569.68 87.20 2.2440 0.0121 *
## Teamt 4 153.02 38.25 0.9844 0.4242
## FGtM1 1 757.14 757.14 19.4831 5.147e-05 ***
## Residuals 52 2020.79 38.86
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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anova(lm(FGt~Teamt+Name+FGtM1, data=goals))

## Analysis of Variance Table
##
## Response: FGt
## Df Sum Sq Mean Sq F value Pr(>F)
## Teamt 21 1721.49 81.98 2.1094 0.01508 *
## Name 1 1.20 1.20 0.0310 0.86100
## FGtM1 1 757.14 757.14 19.4831 5.147e-05 ***
## Residuals 52 2020.79 38.86
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(b) [4 points]. Explain why the significance of the effect of the team and the kicker depends on the order in
which the variables occur in the model. Can the data distinguish whether the goal kicking percentage
is best explained by team or by kicker or by both?

Solution. As discussed in 6(a), the team and the kicker are almost indistinguishable—they are perfectly
indistinguishable unless the kicker changes team. If we include the Name variable first, and then test for the
inclusion of Teamt we are testing whether the team adds significantly more explanatory power over the kicker
identity, which it doesn’t (since both carry almost the same information). However, if we include Teamt first,
it shows up as significant, as expected since we have already found that Name alone is significiant.

The data alone do not establish whether the observed effect is due to the kicker or due to some other aspect
of the team, since Teamt alone explains the data similary well to Name alone. Some common knowledge about
football may suggest that the kicker is more responsible for the success of the goal attempt than his team
mates, but that conclusion doesn’t come directly out of these data.

Acknowledgments: The goals data were presented by A Modern Approach to Regression with R by S. J.
Sheather, and originally come from http://www.rorotimes.com/nfl/stats.

License: This material is provided under an [MIT license] (https://ionides.github.io/401w18/LICENSE)
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