
STATS 401. Applied Statistical Methods II

1. Introduction

Welcome!

Objectives: Linear statistical models are the foundation for most of
applied statistics. We will develop statistical computation skills (R
programming) and mathematical skills (working with matrices) while
studying data analysis using linear models.

Pre-requisites: We will assume familiarity with material in STATS 250.
All course notes and labs for STATS 250 are at

open.umich.edu/find/open-educational-resources/statistics

If you have a different background (AP Statistics, STATS 280, or some
other introductory statistics class) you should check the STATS 250 notes
and if necessary come for help in office hours.

open.umich.edu/find/open-educational-resources/statistics


Let’s get started

We will work through a data analysis using a linear model, and then study
the math and stats so that (i) we can command the computer to generate
what we want; (ii) we can interpret what the computer tells us.

Obtain the data, usually from the internet

Install R (www.r-project.org) and Rstudio (www.rstudio.com)

Read the data into R

Plot the data

Develop a model

Estimate parameters and test hypotheses of interest

Interpret the results

The two rising stars in statistical computing are R and Python
(http://r4stats.com/articles/popularity/). Generally, R is
preferred for data analysis, and Python for larger programming projects.

We live in an era of abundant data. Learn R!

www.r-project.org
www.rstudio.com
http://r4stats.com/articles/popularity/


Case study: Are people healthier in booms or busts?

• Is population health pro-cyclical (improving in business cycle booms) or
counter-cyclical (improving in recessions), or neither?

• Life expectancy at birth combines instantaneous death rates at all
ages and is a basic measure of current population health.

• USA data for 1933–2015 are in the file life_expectancy.txt on the
course GitHub repository github.com/ionides/401w18/01 or the
website ionides.github.io/401w18/01. The first lines of this file are:

# The United States of America, Life expectancy at birth.

# Downloaded from Human Mortality Database on 30 Oct 2017.

# HMD request that you register at http://www.mortality.org

# if you use these data for research purposes.

Year Female Male Total

1933 62.78 59.17 60.88

1934 62.34 58.34 60.23

• Note: # denotes a comment in R, so the first four text lines will be
ignored when we read in the data.

life_expectancy.txt
github.com/ionides/401w18/01
ionides.github.io/401w18/01
#


Read the data into R and then inspect it

L <- read.table(file="life_expectancy.txt",header=TRUE)

Question 1.1. Why should we prefer to use the command line form of R
rather than a menu option, say in R Commander?

Now, let’s check on the data. To see the first three rows,

L[1:3,]

## Year Female Male Total

## 1 1933 62.78 59.17 60.88

## 2 1934 62.34 58.34 60.23

## 3 1935 63.04 58.96 60.89

Here, we’re using matrix indexing. L[i,j] is the row i column j entry
of L. Also, 1:3 is the sequence 1,2,3 and the blank space after the
comma in L[1:3,] requests all the rows for the specified columns.



Matrices and their dimensions

Mathematically, we write L =


`11 `12 . . . `1n
`21 `22 . . . `2n

...
...

. . .
...

`m1 `m2 . . . `mn

.

We say L is a matrix with dimension m× n. To get the dimension in R,

dim(L)

## [1] 83 4

We can also get the number of rows and columns separately,

cat("number of rows = ", nrow(L),

"; number of columns = ", ncol(L))

## number of rows = 83 ; number of columns = 4



Extracting rows and columns from a matrix

A single row or column of a matrix is a vector. Vectors will be discussed
more in Chapter 2.

For example, we can set y to be total life expectancy, combining men and
women, which is the fourth column of L, as follows.

y <- L[,4]

y[1:3]

## [1] 60.88 60.23 60.89

Question 1.2. We read the assignment operator <- as “y gets L[,4]”.
We could have written y=L[,4]. However, <- is slightly better coding
practice than =. Why?

y
L
<-
y
L[,4]
y=L[,4]
<-
=


Vectors in R

For R, vectors are not matrices. A vector has a length but not a dim.
When subsetting a matrix, the dimension of length 1 is dropped.

dim(y)

## NULL

length(y)

## [1] 83

We can extract the components of a vector. For example, to obtain the
increase in life expectancy each year over the previous year,

g <- y[2:length(y)] - y[1:(length(y)-1)]

Since the increase is not defined for the first year life expectancy is
measured, let’s set the first increase to NA,

g <- c(NA,g)

g[1:8]

## [1] NA -0.65 0.66 -0.54 0.70 1.34 0.68 0.16

Note: here we’ve seen two of R’s special non-numeric values. NULL means
“doesn’t exist”. NA means “not available” or “missing”. Data matrices can
have NA entries but not NULL. R tries to treat missing data appropriately.

length
dim
1
NA
NULL
NA
NA
NULL


Numeric, logical and character data in R

Numeric data are matrices and vectors whose entries are numbers.
Qualitative data are character strings. Logical data are TRUE or FALSE.

g[1:4]

## [1] NA -0.65 0.66 -0.54

L_up_logical <- g>0

L_up_logical[1:4]

## [1] NA FALSE TRUE FALSE

L_up_qualitative <- ifelse(g>0,"increased","decreased")

L_up_qualitative[1:4]

## [1] NA "decreased" "increased" "decreased"

The class function tells us what data type R is working with

class(g)

## [1] "numeric"

class(L_up_logical)

## [1] "logical"

class(L_up_qualitative)

## [1] "character"

TRUE
FALSE
class


Getting help with R

Learning a computing language is sometimes frustrating. Please proceed in
the following order

1 The R help, e.g., type ?ifelse for information on the syntax of
ifelse.

2 The internet, e.g., google “R ifelse”.

3 Classmates.

4 Office hours, start-and-end of class, lab

5 Email to instructor and/or GSI.

For detailed email help, please construct and email a simple example
demonstrating the issue. Sometimes, the issue gets resolved by writing it
out!

?ifelse
ifelse


R data structures: dataframes and matrices

• A matrix in R must have all entries of the same type. The mathematics
of fitting a linear statistical model will require type to be numeric.

• For example, to convert data to a numeric representation for statistical
analysis, L_up_logical or L_up_qualitative could be coded using 0

for FALSE (or "decreased") and 1 for TRUE (or "increased").

• A dataframe in R may have different types in each column. Data are
usually stored in dataframes, e.g., read.table() generates a dataframe.

class(L)

## [1] "data.frame"

L_matrix <- as.matrix(L)

class(L_matrix)

## [1] "matrix"

• For many purposes, dataframes and matrices behave the same.

Innuit have many words for snow (wikipedia:Eskimo_words_for_snow)
and R has many ways of working with data. To do effective data analysis,
these are worth learning!

L_up_logical
L_up_qualitative
0
FALSE
"decreased"
1
TRUE
"increased"
read.table()
wikipedia:Eskimo_words_for_snow


Subsetting matrices and vectors in R

• Vectors and matrices can be subsetted using logical vectors. Each entry
of a vector (or row/column of a matrix) is included if the logical vector is
TRUE and excluded if FALSE.

• Rows and columns can be selected using row and column names:

colnames(L)

## [1] "Year" "Female"

## [3] "Male" "Total"

rownames(L)[1:8]

## [1] "1" "2" "3" "4"

## [5] "5" "6" "7" "8"

Question 1.3. What is computed below. Can you find any interpretation?
L[g<0,"Year"]

## [1] NA 1934 1936 1943 1957 1960 1962 1963 1966 1968 1980

## [12] 1985 1988 1993 2015

TRUE
FALSE


Building matrices and vectors in R

The c() function combines numbers into vectors, and also combines
vectors into longer vectors.

u <- c(1,2)

u

## [1] 1 2

v <- c(3,4)

v

## [1] 3 4

w <- c(u,v)

w

## [1] 1 2 3 4

We can build a matrix using matrix(). Also, we can get a matrix by
binding together vectors either as rows or columns.

A <- matrix(1:6,nrow=2)

A

## [,1] [,2] [,3]

## [1,] 1 3 5

## [2,] 2 4 6

B <- rbind(u,v)

B

## [,1] [,2]

## u 1 2

## v 3 4

C <- cbind(u,v)

C

## u v

## [1,] 1 3

## [2,] 2 4

Exercises. What would cbind(A,B) produce? Play with these functions.
Check out ?matrix to get the syntax of this command.

c()
matrix()
cbind(A,B)
?matrix


Continuing our health economics case study

We looked at data on mortality. We’ll use Bureau of Labor Statistics data
on unemployment as a measure of the business cycle.

# Data extracted on: February 4, 2016

# from http://data.bls.gov/timeseries/LNU04000000

# Percent unemployment, age 16+, not seasonally adjusted

Year,Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec

1948,4.0,4.7,4.5,4.0,3.4,3.9,3.9,3.6,3.4,2.9,3.3,3.6

1949,5.0,5.8,5.6,5.4,5.7,6.4,7.0,6.3,5.9,6.1,5.7,6.0

U <- read.table(file="unemployment.csv",sep=",",header=TRUE)

U[1:2,]

## Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

## 1 1948 4 4.7 4.5 4.0 3.4 3.9 3.9 3.6 3.4 2.9 3.3 3.6

## 2 1949 5 5.8 5.6 5.4 5.7 6.4 7.0 6.3 5.9 6.1 5.7 6.0

Note: the data are in a comma separated variable (csv) format, so we use
read.table(...,sep=",",...).

read.table(..., sep=",",...)


Averaging columns in R

We want annual average unemployment. For each row, we must average
columns 2:13.

u <- apply(U[,2:13],1,mean)

u[1:6]

## [1] 3.766667 5.908333 5.325000 3.333333 3.033333 2.925000

• apply() carries out an operation (here, taking the mean) on rows or
columns of matrices. We will learn more about it later.

• The middle argument 1 to apply() asks for the function mean() to be
applied to each row.

• Setting 2 would give the average over rows for each column.

• Remember: apply(U,1,...) gives a vector of length dim(U)[1], and
apply(U,2,...) gives a vector of length dim(U)[2].

dim(U)

## [1] 68 13

length(apply(U,1,mean))

## [1] 68

length(apply(U,2,mean))

## [1] 13

2:13
apply()
1
apply()
mean()
2
apply(U,1,...)
dim(U)[1]
apply(U,2,...)
dim(U)[2]


Plotting the data

plot(L$Year,y,type="line",

xlab="Year",

ylab="Life expectancy")

plot(U$Year,u,

xlab="Year",

ylab="Unemployment")

• A basic rule of applied statistics is to plot the data.

• Carefully designed plots can reveal secrets in the data: (i) label axes; (ii)
lines or points or both; (iii) any other creative ideas?

• This course will use the basic plot() function. A powerful modern
approach to graphics is the “grammar of graphics” in the ggplot2

package, taught in STATS 306.

plot()
ggplot2


Detrending life expectancy

• Life expectancy is generally increasing with time. We say it has an
increasing trend.

• We’re interested in whether it is above or below trend during economic
booms.

• Subtracting an estimate of the trend from each data point is called
detrending. A basic way to do this is to fit a linear trend that fits the
data best, by finding the line mimizing the sum of squares of distances to
the data.

• Most of you have seen this done before:
https://open.umich.edu/sites/default/files/downloads/

interactive_lecture_notes_12-regression_analysis.pdf

• In this course, we’re going to study linear models and their statistical
properties in much more detail.

• First, let’s see how to compute this least squares fitted line using the
lm() function in R.

https://open.umich.edu/sites/default/files/downloads/interactive_lecture_notes_12-regression_analysis.pdf
https://open.umich.edu/sites/default/files/downloads/interactive_lecture_notes_12-regression_analysis.pdf
lm()


Fitting a linear model using lm()

L_fit <- lm(Total~Year,data=L)

• Using Total~Year to model Total depends on Year in R is called a
formula. Type ?lm in R to see the function description.

• We could have said lm(L$Total~L$Year) or
lm(y=L$Total,x=L$Year).

• Writing data=L tells lm() to look for the linear model variables in the
dataframe L and makes the model easier to read.

plot(Total~Year,L,type="l")

lines(L$Year,L_fit$fitted.values,

lty="dotted")

• The fitted values in
L_fit$fitted.values give the
dotted line.

• We use formulas in plot() just
like we did in lm().

lm()
Total~Year
?lm
lm(L$Total~L$Year)
lm(y=L$Total,x=L$Year)
data=L
lm()
L
L_fit$fitted.values
plot()
lm()


Exploring the output of lm

• We call L_fit a fitted model object since it is an R object that was
created by fitting a model, in this case a linear model fitted using lm.

• First, let’s check the class of the object

class(L_fit)

## [1] "lm"

• We see that lm is both the name of the function to fit a linear model
and the class of the resulting fitted model object.

• Now, let’s see what the fitted model object contains:

names(L_fit)

## [1] "coefficients" "residuals" "effects"

## [4] "rank" "fitted.values" "assign"

## [7] "qr" "df.residual" "xlevels"

## [10] "call" "terms" "model"

• L_fit is a list with all the things R thinks we might want to know about
the fitted linear model. Components are accessed using $. We have
already seen the fitted values accessed using L_fit$fitted.values. We
will use other components later in the course.

lm
L_fit
lm
lm
L_fit
$
L_fit$fitted.values


Computer software notation vs math notation

• Computers compute things. That’s what they do. It seems obvious.

• A computer function takes numbers in and spits numbers out. It can’t
know whether the analysis is correct, or reasonable, or useful for some
purpose, or complete nonsense. Artificial intelligence is not (yet) good at
applied statistics!

• For describing statistical assumptions, understanding the behavior
of statistical tests, and defining statistical models, mathematics is
a more appropriate language than computer code.

• We have to learn to write about statistics using two different languages:
mathematics and computing. We have to learn when each is appropriate.

• If all is well, the math helps us understand the computing and vice versa.

• We have already seen one example: matrices and vectors are
simultaneously (i) mathematical objects, with certain mathematical rules
and definitions; (ii) R objects which follow a set of rules inspired by the
mathematics.

• How do we mathematically write down the statistical linear model that
we fitted using lm()?

lm()


A linear model – the sample version

• Suppose our data are y1, y2, . . . , yn and on each individual i we have p
explanatory variables xi1, xi2, . . . , xip. A linear model is

(LM1) yi = b1xi1 + b2xi2 + · · ·+ bpxip + ei for i = 1, 2, . . . , n

• This is a model for a particular sample y1, . . . , yn. A basic task of
statistics is to generalize from a sample to a population. We’ll do that
later.

• The residual error terms e1, . . . , en in equation (LM1) include
everything about the data y1, y2, . . . , yn that cannot be explained by the
linear combination of the explanatory variables.

• Using summation notation we can write the linear model for this
sample in a more compact way,

(LM2) yi =

p∑
j=1

xijbj + ei for i = 1, 2, . . . , n

• We’ll review summation notation in due course.



Applying the linear model to detrend life expectancy

• When we did L_fit<-lm(Total~Year,data=L) earlier, we fitted the
linear model (LM1) with yi being the total life expectancy for the ith
year in the dataset (recall that total life expectancy means combining
males and females) and xi1 being the corresponding year.

• To fit a linear trend, we also want an intercept, which we can write by
setting xi2 = 1 for each year i.

• In this special case, with p = 2 variables and xi2 = 1, the model (LM1)
is called the simple linear regression model,

(SLR1) yi = b1xi1 + b2 + ei for i = 1, 2, . . . , n

• Here, b2 is the intercept for the fitted line yi = b1xi1 + b2 when we
ignore the residual errors e1, . . . , en.

• In L_fit<-lm(Total~Year,data=L), we gave R the task of finding the
values of the coefficients b1 and b2 which minimize the sum of squared
errors,

∑n
i=1 e

2
i .

• We didn’t have to tell R we wanted an intercept. By default, it assumed
we did. In this case it was right.

L_fit <- lm(Total~Year,data=L)
L_fit <- lm(Total~Year,data=L)


Is unemployment assosciated with higher or lower
mortality?

• Now, we’ll fit another linear model to see if the detrended life
expectancy can be explained by the level of economic activity, quantified
by the unemployment rate.

• We have seen that residuals is one of the components of an lm

object, by looking at names(L_fit).

• Residual is a more polite name than residual error. That is appropriate
here, since the “error” ei is exactly the deviation from trend which we are
most interested in. Interpretation of ei depends on the exact situation
under consideration.

• First, let’s set up the variables for the regression. Since we detrended life
expectancy, we should also detrend unemployment. Then, we have some
work to do to make sure that the years for these two datasets match!

L_detrended <- L_fit$residuals

U_detrended <- lm(u~U$Year)$residuals

L_detrended <- subset(L_detrended,L$Year %in% U$Year)

residuals
lm
names(L_fit)


A linear model linking mortality and unemployment

lm1 <- lm(L_detrended~U_detrended)

coef(lm1)

## (Intercept) U_detrended

## 0.2899928 0.1313673

• We have obtained a positive coefficient for the sample linear model.
Higher unemployment seems to be associated with higher life expectancy.
This may be surprising. Is the result statistically significant? What
happens if we use a different explanatory variable instead of
unemployment? Or if we use more than one explanatory variable? Are
there any violations of statistical assumptions that might invalidate this
analysis? Is it reasonable to make a causal interpretation (that economic
cycles cause fluctuations in life expectancy) or must we limit ourselves to
a claim that these variables are associated?

• Giving informed answers to statistical questions such as these is a
primary goal of the course.


