
2. Linear algebra for applied statistics

• Linear algebra is the math of vectors and matrices.

• In statistics, the main purpose of linear algebra is to organize data and
write down the manipulations we want to do to them.

• A vector of length n is also called an n-tuple, or an ordered sequence
of length n.

• We can suppose that each data point is a real number. We write R for
the set of real numbers, and Rn for the set of vectors of n real numbers.

• Write the US life expectancy at birth for 2011 to 2015 as
y = (y1, y2, y3, y4, y5) = (79.0, 79.1, 79.0, 79.0, 78.9).

• We see y ∈ R5. Numerical data can always be written as a vector in Rn

where n is the number of datapoints. Categorical data can also be
written as a vector in Rn by assigning a number for each category.

• Note that we use a bold font for vectors, and an italic font for the
components of the vector. Components of a vector are also called
elements.



More perspectives on vectors

Question 2.1. You may or may not have seen vectors in other contexts.
In physics, a vector is a quantity with magnitude and direction. How does
that fit in with our definition?

Question 2.2. How can I distinguish vectors in my own handwriting, since
I can’t handwrite in a bold font?

An underscore is a conventional handwritten alternative to a bold font, so
x is equivalent to x˜. In physics and mathematics, vectors are sometimes

written as
→
x , but we will not do that here.
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Adding vectors and multiplying by a scalar

• For a dataset, the index i of the component yi of the vector y might
correspond to a measurement on the ith member of a population, the
outcome of the ith group in an experiment, or the ith observation out of
a sequence of observations on a system. Generically, we will call i an
observational unit, or just unit.

• We might want to add two quantities ui and vi for unit i.

• Using vector notation, if u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) and
y = (y1, y2, . . . , yn) we define the vector sum y = u+ v to be the
componentwise sum yi = ui + vi, adding up the corresponding
components for each unit.

• We might also want to rescale each component by the same factor. To
change a measurement yi in inches to a new measurement zi in mm, we
rescale with the scalar α = 25.4. We want zi = αyi for each i. This is
written in vector notation as multplication of a vector by a scalar,
z = αy.

• Keep track of whether each object is a scalar, a vector (what is its
length?) or a matrix (what are its dimensions?).



Adding vectors and multiplying by a scalar

Worked example. An ecologist measures the pH of ten Michigan lakes at
two points in the summer. Set up vector notation to describe her data.
Write a vector calculation to find the average pH in each lake.

Solution.

First, set up notation.

Let xi be the first pH measurement in lake i, for i ∈ {1, 2, . . . , 10}.

Then, x = (x1, . . . , x10) is the vector of the first pH measurement in each
of the 10 lakes.

Let y = (y1, . . . , y10) be the vector of second measurements.

Let µ = (µ1, . . . , µ10) be the average pH for each of the 10 lakes.

For each lake i, the mean is µi =
1
2(xi + yi). In vector notation, this is

µ =
1

2
(x+ y)

.
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Vectors and scalars in R

• We have seen in Chapter 1 that R has vectors. An R vector of length 1
is a scalar.

• You can check that R follows the usual mathematical rules of vector
addition and multiplication by a a scalar.

x <- c(1,2,3)

y <- c(4,5,6)

x+y

## [1] 5 7 9

3*x

## [1] 3 6 9

• R also allows adding a scalar to a vector

x <- c(1,2,3) x+2

## [1] 3 4 5

• Mathematically, adding scalars to vectors is not allowed. Instead, we
define the vector of ones, 1 = (1, 1, . . . , 1), and write x+ 2× 1.

Question 2.5. Why does R break the usual rules of mathematics here?



Matrices

• Matrices provide a way to store and manipulate p quantitites for each of
n units.

• An n× p matrix A is a numerical array with n rows and p columns,

A =


a11 a12 . . . a1p
a21 a22 . . . a2p

...
...

. . .
...

an1 an2 . . . anp

 .
• Data that have the form of a matrix are called rectangular.

• Many common datasets are rectangular, consisting of multiple variables
collected on a groups of individual units.

• We will use blackboard bold capital letters, A, B, X, Z, etc, for
matrices. We are keeping plain capital letters to use for random variables.

• We say A = [aij ]n×p as an abbreviation for writing the full n× p matrix.



Matrix times vector multiplication

• A linear system of n equations with p unknown variables, x1, . . . , xp is

a11x1 + a12 x2 + . . . + a1p xp = b1
a21x1 + a22 x2 + . . . + a2p xp = b2

...
...

...
an1x1 + an2 x2 + . . . + anp xp = bn

 (L1)

We define matrix multiplication Ax = b to match this linear system. So,
a11 a12 . . . a1p
a21 a22 . . . a2p

...
...

. . .
...

an1 an2 . . . anp



x1
x2
...
xp

 =


b1
b2
...
bn


is exactly equivalent to the collection of p linear equations in (L1) above.

• Mechanically, the ith component of Ax is found by multiplying each
term in the ith row of A with corresponding terms in the column vector
x, and adding these contributions. See Homework 2 for practice!



Column vectors and row vectors

• In the matrix times vector multiplication on the previous slide, the vector
x is written in a column, as a p× 1 matrix.

• We say that that x is a column vector. We interpret a vector x as a
column vectors unless we explicitly say it is a 1× p row vector.

• Similarly, b in the previous slide is a length n column vector.

• R matches our notation: a vector in R is not a matrix, but is interpreted
as a column vector for matrix times vector multiplication. R uses %*% to
denote matrix multiplication.

x <- c(1,2)

is(x,"matrix")

## [1] FALSE

is(x,"vector")

## [1] TRUE

A<-matrix(

c(1,0,0,-1),nrow=2)

A %*% x

## [,1]

## [1,] 1

## [2,] -2

xx<-matrix(x,nrow=2)

A %*% xx

## [,1]

## [1,] 1

## [2,] -2

%*%


Does a system of linear equations have no solution? One
solution? Many solutions?

• One linear equation in one unknown, ax = u, has a unique solution
unless a = 0.

• One linear equation with two unknowns, ax+ by = u, has a solution
consisting of all points on a line in the x− y plane, as long as one of a
and b is nonzero.

• Two linear equations with two unknowns,
ax + by = u
cx + dy = v

, have a

unique solution where the lines ax+ by = u and cx+ dy = v intersect,
so long as these lines are not parallel.

• Three linear equations in two unknowns will not usually have a
solution—the three corresponding lines would all have to meet at a
common point.

• Can you see the general pattern?



Does a system of linear equations have no solution? One
solution? Many solutions? Continued...

• For three unknowns, an equation ax+ by + cz = u corresponds to a
plane in three-dimensional (x, y, z) space.

• Three planes will typically intersect at a single point, so three equations
in three unknowns will typically have a unique solution.

• Two planes that are not parallel will meet along a line, and give a family
of solutions.

• Four or more planes will typically not all meet at any point.

• In higher dimensions, we can’t visualize but the pattern remains true.

• The general linear system we wrote previously in (L1) has n equations
with p unknowns. We expect a unique solution when p = n, no solution
when p < n and a family of solutions when p > n.



Using matrices to solve a system of linear equations

• We’ve seen how matrices can represent a system of linear equations as
Ax = b.

• For a basic linear algebra equation ax = b we would divide through by a,
or equivalently multiply through by a−1, to find x = a−1b when a 6= 0.

• Is there a matrix inverse A−1 such that x = A−1b solves the system of
linear equations Ax = b?

• We will see that there is an inverse A−1 when the system of linear
equations has a unique solution. Since software can compute this inverse,
we can solve systems of linear equations easily. This is useful in statistics
for fitting linear models to datasets. Understanding when this inverse
exists, and what to do when it doesn’t, will help us develop appropriate
models for data analysis.

• From the previous slide, we can only expect A−1 to exist when p = n, in
which case A is called a square matrix.



Multiplying two matrices

• Let A = [aij ]n×p and X = [xij ]p×q be two matrices.

• The columns of X can be written as x1, x2, . . . , xq.

• X consists of these q columns glued together, so X = [x1 x2 x3 · · · xq].

• Here, xj is a vector whose ith component is xij .

• We define the matrix product AX by gluing together the matrix times
vector products for each column of X, so AX = [Ax1 Ax2 Ax3 · · · Axq].

• From this definition, we see:

1 The (i, j) entry of AX is found by sliding the ith row of A down the
jth column of X, multiplying the corresponding terms and adding
them. See homework for practice!

2 Since each product Axj is a vector of length n, the dimension of AX
is n× q. So, the rule for the dimension of a matrix product is

(n× p)× (p× q) = (n× q)

3 For the matrix product to exist, the number of columns of the first
matrix must equal the number of rows of the second.



A matrix product example

Question 2.6. Let U =

[
2 2
1 −1

]
and V =

[
3 1
1 2

]
. Calculate UV.

We can check our working in R.

U <- matrix(

c(2,1,2,-1),2)

U

## [,1] [,2]

## [1,] 2 2

## [2,] 1 -1

V <- matrix(

c(3,1,1,2),2)

V

## [,1] [,2]

## [1,] 3 1

## [2,] 1 2

U %*% V

## [,1] [,2]

## [1,] 8 6

## [2,] 2 -1



Matrix multiplication is not commutative

• Scalar multiplication (i.e., the usual multiplication of two numbers) has
the commutative property, uv = vu.

• Matrix multiplication does not usually have this property, e.g.,

U %*% V

## [,1] [,2]

## [1,] 7 4

## [2,] 5 0

V %*% U

## [,1] [,2]

## [1,] 8 2

## [2,] 6 -1

• We are all very used to multiplication being commutative. It takes
practice to get used to the fact that matrix multiplication doesn’t
commute.



Addition of matrices and multiplication by a scalar

• If A = [aij ]p×q and B = [bij ]p×q then the matrix sum A+ B is
computed componentwise, just like for vectors: a11 . . . a1q

...
. . .

...
ap1 . . . apq

+

 b11 . . . b1q
...

. . .
...

bp1 . . . bpq

 =

 a11 + b11 . . . a1q + b1q
...

. . .
...

ap1 + bp1 . . . apq + bpq


• Scalar times matrix multiplication is also computed componentwise:

sA = s

 a11 . . . a1q
...

. . .
...

ap1 . . . apq

 =

 s a11 . . . s a1q
...

. . .
...

s ap1 . . . s apq


• Scalar times matrix multiplication does commute: sA = As.

• Matrix and scalar multiplication both have a distributive property:
U(V+W) = UV+ UW, and s(V+W) = sV+ sW,



The identity matrix

• The p× p identity matrix, Ip, is a square matrix with 1’s on the
diagonal and 0’s everywhere else:

Ip =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


• Check that for any p× p matrix A, we have IpA = AIp = A. Also, for
any vector v ∈ Rp we have Ipv = v.

• We can often write I in place of Ip since the dimension of I is always
evident from the context.

Question 2.7. Suppose B is a n× q matrix and I is an identity matrix.
(i) If we write BI, what must be the dimension of I? Find a simplification
of BI.

(ii) How about if we write IB?



Inverting a 2× 2 matrix

• Let A =

[
a b
c d

]
be a general 2× 2 matrix.

• Then, A
[
x
y

]
=

[
u
v

]
corresponds to a system of linear equations,

ax + by = u
cx + dy = v

}
(L2)

• Recall that the inverse A−1 should solve this linear system, i.e.,[
x
y

]
= A−1

[
u
v

]
.• We can solve a pair of linear equations by hand. First, we solve for x by
eliminating y. We can rewrite (L2) as

adx + bdy = du
bcx + bdy = bv

(L3.1)
(L3.2)

• Subtracting (L3.2) from (L3.1) gives (ad− bc)x = du− bv and so
x = 1

ad−bc(du− bv).



Inverting a 2× 2 matrix, Continued...

• Next, we can find y by eliminating x. We rewrite (L2) as

acx + bcy = cu
acx + ady = av

Then subtraction gives (ad− bc)y = av − cu.

• Collecting these results, we find[
x
y

]
=

1

ad− bc

[
d −b
−c a

] [
u
v

]
.

• This gives us the formula for A−1,[
a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]



The identity A−1A = I

• We constructed A−1 so that Ax = b has solution x = A−1b.

• Formally, this amounts to multiplying both sides of the equation Ax = b
by A−1.

• This gives us
A−1Ax = A−1b.

• Mathematically, it must be true that

A−1A = I

so that
A−1Ax = Ix = x.

• This matches usual arithmetic, where we have the identity a−1a = 1.



The determinant of a 2× 2 matrix

• Recall that A−1 =
[
a b
c d

]−1
= 1

ad−bc

[
d −b
−c a

]
• We call ad− bc the determinant of A, and we write

det(A) = ad− bc.

• We can see from the formula for A−1 that the inverse of A exists if and
only if ad− bc 6= 0.

Question 2.8. What does it mean geometrically for ad− bc = 0?

Hint: the slope of the line ax+ by = u is −a/b, and the slope of
cx+ dy = v is −c/d.



Finding the matrix inverse and determinant in R

• The R function det() finds the determinant of a square matrix, and
solve() finds the inverse if it exists.

A <- matrix(runif(9),3,3)

round(A,2)

## [,1] [,2] [,3]

## [1,] 0.27 0.91 0.94

## [2,] 0.37 0.20 0.66

## [3,] 0.57 0.90 0.63

A_inv <- solve(A)

round(A_inv,2)

## [,1] [,2] [,3]

## [1,] -2.18 1.30 1.91

## [2,] 0.68 -1.75 0.82

## [3,] 1.02 1.32 -1.33

A %*% A_inv

## [,1] [,2] [,3]

## [1,] 1.000000e+00 0 0

## [2,] -1.110223e-16 1 0

## [3,] 0.000000e+00 0 1

det(A) ; det(A_inv)

## [1] 0.2139161

## [1] 4.674729

Question 2.9. Why is A%*%A_inv not exactly equal to the identity
matrix?

det()
solve()
A %*% A_inv


Using R to solve a set of linear equations

Worked example. Suppose we want to solve

w + 2x − 3y + 4z = 0
2w − 2x + y + z = 1
−w − x + 4y − z = 2
3w − x − 8y + 2z = 3

How do we do this using R?

1. Write the system as a matrix equation Ax = b,


1 2 −3 4
2 −2 1 1
−1 −1 4 −1
3 −1 −8 2



w
x
y
z

 =


0
1
2
3





Using R to solve a set of linear equations, continued...

2. Enter the matrix A and vector b into R.

A <- rbind( c( 1, 2,-3, 4),

c( 2,-2, 1, 1),

c(-1,-1, 4,-1),

c( 3,-1,-8, 2))

b <- c(0,1,2,3)

3. Compute the matrix solution to the linear system, x = A−1b.

Question 2.10. Which of these correctly computes x and why?

round(solve(A) %*% b,2)

## [,1]

## [1,] -3.75

## [2,] -3.58

## [3,] -0.80

## [4,] 2.13

round(solve(A) * b,2)

## [,1] [,2] [,3] [,4]

## [1,] 0.00 0.00 0.00 0.00

## [2,] -0.09 0.24 -1.15 -0.51

## [3,] 0.00 0.40 -0.40 -0.40

## [4,] 1.09 -0.44 2.35 0.71



The transpose of a matrix

• Sometimes we want to switch the rows and columns of a matrix.

• For example, we usually suppose that each column of a data matrix is a
measurement variable (say, height and weight) and each row of a data
matrix is an object being measured (say, a row for each person).
However, what if the data were stored in a matrix where columns
corresponded to objects?

• Switching rows and columns is called transposing the matrix.

• The transpose of A is denoted mathematically by At and in R by t(A).

A =


1 2 −3
2 −2 1
−1 −1 4
3 −1 −8

 , At
=

 1 2 −1 3
2 −2 −1 −1
−3 1 4 −8



• If A has dimension n× p, then At is p× n.

t(A)


More properties of matrices

• The following material is not essential for this course. However, it may
help reinforce understanding to see more ways in which matrix addition
and multiplication behave similarly, or differently, from usual arithmetic.

Associative property. We are used to the associative property of addition
and multiplication for numbers: a+ (b+ c) = (a+ b) + c and
a× (b× c) = (a× b)× c. You can check that matrix addition and
multiplication also have the associative property: for matrices of
appropriate size, A+ (B+ C) = (A+ B) + C and A(BC) = (AB)C.

Inverse of a product. For square invertible matrices A and B, we can
check that (AB)−1 = B−1A−1. The change of order may seem weird. To
demonstrate that this inverse works correctly,

(AB)−1(AB) = B−1A−1AB = B−1I B = B−1B = I.

Note that we have repeatedly used the associative property of matrix
multiplication, and we have been careful not to accidentally commute
(recall that, in general, CD 6= DC).



More properties of matrices, continued

Transpose of a sum. Convince yourself that (A+ B)t = At + Bt. If you
like, calculate an example in R to check.

Transpose of a product. The rule is (AB)t = BtAt.

Question 2.11. Suppose that A has dimension n× p and B is p× q.
Check that this formula for (AB)t has the right dimension.

Example:

A <- matrix(1:3,4,3); B <- matrix(1:6,3,2)

t(A %*% B)

## [,1] [,2] [,3] [,4]

## [1,] 14 11 11 14

## [2,] 32 29 29 32

t(B) %*% t(A)

## [,1] [,2] [,3] [,4]

## [1,] 14 11 11 14

## [2,] 32 29 29 32



More properties of matrices, continued

A matrix commutes with its inverse: A−1A = AA−1 = I.

• Recall that, in general, matrix multiplication does not commute
(AB 6= BA).

• We can check, using R, that a matrix does commute with its inverse.

A <- matrix(runif(9),3,3) A_inv <- solve(A)

round( A %*% A_inv, 3)

## [,1] [,2] [,3]

## [1,] 1 0 0

## [2,] 0 1 0

## [3,] 0 0 1

round( A_inv %*% A, 3)

## [,1] [,2] [,3]

## [1,] 1 0 0

## [2,] 0 1 0

## [3,] 0 0 1


