
3. Fitting a linear model to a sample by least squares

• Recall the sample version of the linear model. Data are y1, y2, . . . , yn
and on each individual i we have p explanatory variables xi1, xi2, . . . , xip.

(LM1) yi = b1xi1 + b2xi2 + · · ·+ bpxip + ei for i = 1, 2, . . . , n

• Using summation notation, we can equivalently write

(LM2) yi =

p∑
j=1

xijbj + ei for i = 1, 2, . . . , n

• We can also use matrix notation. Define column vectors
y = (y1, y2, . . . , yn), e = (e1, e2, . . . , en) and b = (b1, b2, . . . , bp). Define
the matrix of explanatory variables, X = [xij ]n×p. In matrix notation,
writing (LM1) or (LM2) is exactly the same as

(LM3) y = Xb+ e

• Matrices give a compact way to write the linear model, and also a good
way to carry out the necessary computations.



The least squares formula

• We seek the least squares choice of b that minimizes the sum of
squared error,

∑n
i=1 e

2
i .

• Since n is usually much bigger than p, there is usually no value of b for
which we can exactly explain the data using the explanatory matrix X.

• In other words, there is no choice of b which solves Xb = y.

• The least squares choice of b turns out to be

(LM4) b =
(
XtX

)−1Xt
y

• We will check that this is the formula R uses to fit a linear model.

• We will also gain understanding of (LM4) by studying the simple linear
regression model yi = b1xi + b2 + ei for which p = 2.

• In the simple linear regression model, b1 and b2 are called the slope and
the intercept. In general, b1, . . . , bp are called the coefficients of the
linear model. We call b the coefficient vector.

• In R, we obtain b using the coef() function as demonstrated below.

coef()


Checking the coefficient estimates from R

• Consider the example from Chapter 1, where L_detrended is life
expectancy for each year, after subtracting a linear trend, and
U_detrended is the corresponding detrended unemployment.

lm1 <- lm(L_detrended~U_detrended)

coef(lm1)

## (Intercept) U_detrended

## 0.2899928 0.1313673

• Now, we can construct the X matrix corresponding to this linear model
and ask R to compute the coefficients using the formula (LM4).

X <- cbind(U_detrended,intercept=rep(1,length(U_detrended)))

solve( t(X) %*% X ) %*% t(X) %*% L_detrended

## [,1]

## U_detrended 0.1313673

## intercept 0.2899928

L_detrended
U_detrended


Checking the X matrix we constructed

• The matrix calculation on the previous slide matches the coefficients
produced by lm().

• Take some time to check that our R implementation matches the
formula (LM4).

• We’re fairly sure we got the computation right, because we exactly
matched lm(), but it is a good idea to look at the X matrix we
constructed.

head(X)

## U_detrended intercept

## 1 -1.0075234 1

## 2 1.1027941 1

## 3 0.4881116 1

## 4 -1.5349043 1

## 5 -1.8662535 1

## 6 -2.0059360 1

length(U_detrended)

## [1] 68

dim(X)

## [1] 68 2

lm()
lm()


Naming the X matrix in the linear model y = Xb+ e

• “The X matrix” is not a great name since we would have the same
model if we had called it Z.

• Many names are used for X for the many different purposes of linear
models.

• Sheather’s textbook calls X the matrix of predictor variables or
matrix of explanatory variables.

• We call X the design matrix in situations where xij is the setting of
adjustable variable j for the ith run of an experiment. For example, yi
could be the stregth of an alloy made up of a fraction xij of metal j for
j = 1, . . . , p− 1. We would also want to include an intercept, xip = 1.

• X can also be called the matrix of covariates.

• Sometimes, y is called the dependent variable and X is the matrix of
independent variables. Scientifically, an independent variable is one that
can be set by the scientist. However, independence has a different
technical meaning in statistics.



Fitted values

• The fitted values are the estimates of the data based on the
explanatory variables. For our linear model, these fitted values are

ŷi = b1xi1 + b2xi2 + · · ·+ bpxip, for i = 1, 2, . . . , n.

• The vector of least squares fitted values ŷ = (ŷ1, . . . , ŷn) is given by

(LM5) ŷ = Xb = X
(
XtX

)−1Xt
y.

• It is worth checking we now understand how R produces the fitted values
for predicting detrended life expectancy using unemployment:

my_fitted_values<-X %*% solve(t(X)%*%X) %*% t(X) %*% L_detrended

lm1$fitted.values[1:2]

## [1] 0.1576371 0.4348639

my_fitted_values[1:2]

## [1] 0.1576371 0.4348639

• We see that the matrix calculation (LM5) exactly matches the fitted
values of the lm1 model that we built earlier using lm().

lm1
lm()


Plotting the data

• We have already seen plots of the life expectancy and unemployment
data before. When you fit a linear model you should look at the data and
the fitted values. We plot the fitted values two different ways.

plot(L_detrended~U_detrended)

lines(U_detrended,my_fitted_values,lty="solid",col="blue")

abline(coef(lm1),lty="dotted",col="red",lwd=2)

Question 3.1. Learn about
the abline() and lines()

functions. Explain to yourself
why the solid blue line and
the dotted red line coincide.

abline()
lines()


Review of summation signs

• To do statistics, we often want to sum things up over all data points so
the summation sign

∑n
i=1 comes up frequently.

• The basic trick to understand
∑n

i=1 is that anything written using a
summation sign can be written as a usual sum.

• As long as you can expand from
∑n

i=1 zi to z1 + z2 + · · ·+ zn, and then
contract back again from z1 + z2 + · · ·+ zn to

∑n
i=1 zi, then you can use

what you already know about + to work with
∑n

i=1.

Worked example 1. Can we take a constant outside a sum sign? Is it
true that n∑

i=1

cyi = c

n∑
i=1

yi.

Solution 1. Expand the sum, apply the distributive rule, and contract
again.

n∑
i=1

cyi = cy1 + cy2 + · · ·+ cyn = c(y1 + · · ·+ yn) = c
n∑

i=1

yi.



More worked examples using summation signs

Worked example 2. What happens if we sum a constant? Show that
n∑

i=1

c = nc.

Solution 2. Expand the sum, and apply basic addition.
n∑

i=1

c = c+ c+ · · ·+ c (n times) = nc

Worked example 3. Can we take a derivative through a sum sign? Is it
true that

d

dm

( n∑
i=1

m2x2i

)
=

n∑
i=1

2mx2i

Solution. Start by expanding the sum sign.( n∑
i=1

m2x2i

)
= m2x21 +m2x22 + · · ·+m2x2n.



Worked example 3 continued

The derivative of a sum is the sum of the derivatives (from Calc I) so we
differentiate both sides of the previous expression to give

d

dm

( n∑
i=1

m2x2i

)
= 2mx21 + 2mx22 + · · ·+ 2mx2n.

Now, we must recognize that the + expression can be rewritten using∑n
i=1. This gives two possible contractions, one of which includes an

application of the distributive rule:

2mx21 + 2mx22 + · · ·+ 2mx2n =
n∑

i=1

2mx2i = 2m
n∑

i=1

x2i .

Putting these steps together, we obtain

d

dm

( n∑
i=1

m2x2i

)
=

n∑
i=1

2mx2i = 2m
n∑

i=1

x2i .

We have checked that we can pass d/dm through the summation sign.



Deriving the formula for the least squares coefficient vector

This material will not be tested in the exam. It is presented to show
you an application of differentiation and to explain where the
formula (LM4) for b comes from.

• We derive (LM4) for the simple linear regression model (SLR1).

• The sum of squared error is also the sum of the squared residuals
and is known as the residual sum of squares (RSS). For simple linear
regression, this is

RSS =

n∑
i=1

(
yi − (mxi + c)

)2
• To find m and c minimizing RSS, we differentiate with respect to m and
c and set the derivatives equal to zero.

• When we differentiate RSS with respect to m treating c as a constant,
this is called a partial derivative and is written as ∂RSS/∂m.

• If we can find m and c with ∂RSS/∂m = 0 and ∂RSS/∂c = 0 we have
found a minimum or maximum of RSS.

• RSS is non-negative and can get arbitrarily large for bad choices of m
and c. It must have a minimum but not a maximum.



Expanding the square in the definition of RSS

• It may be helpful to first expand the square in the definition of RSS to
give

RSS =

n∑
i=1

y2i +m2
n∑

i=1

x2i + nc2 − 2m

n∑
i=1

xiyi − 2c

n∑
i=1

yi + 2mc

n∑
i=1

xi

Question 3.2. Check that you can work out the expansion of the square.
This is an exercise in working with summation signs, similar to worked
examples 1 and 2 above.



Differentiating RSS with respect to m and c

Question 3.3. Check that
∂

∂m
RSS = 2m

n∑
i=1

x2i − 2

n∑
i=1

xiyi + 2c

n∑
i=1

xi.

Question 3.4. Check that
∂

∂c
RSS = 2nc− 2

n∑
i=1

yi + 2m

n∑
i=1

xi.

Now to minimize RSS, giving the least squares values of m and c, we set
the derivatives to zero and solve the resulting simultaneous linear
equations for m and c. Canceling the common factor of 2, we get

(LS1)

{
m
∑n

i=1 x
2
i + c

∑n
i=1 xi =

∑n
i=1 xiyi

m
∑n

i=1 xi + cn =
∑n

i=1 yi

We want to know if the least squares equations (LS1) match (LM4).



Simple linear regression in matrix form

• The matrix form of yi = mxi + c+ ei, for i = 1, . . . , n, is y = Xb+ e
where y = (y1, . . . , yn), b = (m, c), e = (e1, . . . , en), x = (x1, . . . , xn)
and 1 = (1, 1, . . . , 1) are column vectors, and X = [x 1 ].

• Written out in full, this is
y1
y2
...
yn

 =


x1 1
x2 1
...

...
xn 1


[
m
c

]
+


e1
e2
...
en


Question 3.5. For this X, check that XtX =

[ ∑n
i=1 x

2
i

∑n
i=1 xi∑n

i=1 xi n

]

Question 3.6. Also, check that Xty =

[ ∑n
i=1 xiyi∑n
i=1 yi

]



The least squares equations in matrix form

• Rather than directly showing that (LS1) has solution b =
(
XtX

)−1Xty,
it is easier to check that (LS1) is written in matrix form as

(LS2)
(
XtX

)
b = Xty.

Question 3.7. Check that (LS1) in matrix form is[ ∑n
i=1 x

2
i

∑n
i=1 xi∑n

i=1 xi n

] [
m
c

]
=

[ ∑n
i=1 xiyi∑n
i=1 yi

]

• Combining Questions 3.5, 3.6 and 3.7 together, we have found that
(LS2) and (LS1) are the same equations. Therefore they must have the

same solution, which is b =
(
XtX

)−1Xty.

• We have proved, using differentiation, that b =
(
XtX

)−1Xty is the
least squares coefficient vector for simple linear regression.


