Stat 401 Fall 2017

Shyamala Nagaraj
Vijay Nair
Slide Set \#3

Bivariate Random Variables, Topics:

- Motivation and Notation
- Joint Distributions of Discrete Random Variables
- Joint and Marginal Distributions (sample to population)
- Expectation and Variance
- Covariance and Correlation
- Independence
- Analogous Concepts for Continuous Distributions
- Linear Combination of Random Variables
- Expectation
- Variance

Recall this example from Slides Set 1

Bivariate Characteristics

Relative Frequency Distributions
Summary Statistics:
Correlation $=0.66 \leftarrow$ what is this? Is this a good summary? What are analogous concepts for populations?

Bivariate Random Variables

- A pair of random variables: Notation (X, Y)
- Sample data $\left(y_{i}, x_{i}\right), i=1, \ldots n$
- More examples:
- Heights of students in Pioneer High School and their fathers
- Number of wins of a sample of women's college basketball teams in 2014 and 2015
- Amount of snow in December 2014 and 2105 for a sample of cities in the US
- BP measurements of selected patients: (systolic BP, diastolic BP)
- Incomes of spouses: (Income F, Income M)

Notation for Populations

- Random Variable X, Y, Z, etc.
- Expected Value, also called Mean: $\mu_{X}, \mu_{Y}, \mu_{Z}$, etc.
- Variance: $\sigma_{X}^{2}, \sigma_{Y}^{2}, \sigma_{Z}^{2}$, etc.
- Standard Deviation (or SD): $\sigma_{X}, \sigma_{Y}, \sigma_{Z}$, etc.
- Random Variable $\mathrm{X}_{1}, \mathrm{X}_{2}$, etc.
- Expected Value or Mean: μ_{1}, μ_{2}, etc.
- Variance $\sigma_{1}^{2}, \sigma_{2}^{2}$, etc.
- Standard Deviation (or SD): σ_{1}, σ_{2}, etc.
- Problems of interest: Joint distribution of X and Y; relationship between X and Y
- Study their distribution of X and Y together and not just separately
- So ... what is "Joint Distribution"? All possible values (x, y) and their probabilities

Bivariate Distribution for Discrete RVs -- Population

- Randomly selected UM undergraduate
- X = Dyes hair (yes/no)
- Possible values (simplified): $\{0,1\}$
- $\mathrm{Y}=$ Pierces ear (none, one ear, both ears)
- Possible values (simplified): $\{0,1,2\}$
- All possible values of (X, Y) ? How many?
- Joint distribution of (X, Y) given below:

Possible values y

		$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	Marginal Dist of \mathbf{X}
Possible values x	$\mathbf{0}$	0.4	0.1	0	0.5
	Marginal Dist of Y	0.5	0.4	0.1	Total

What are some of the questions of interest?
How is the joint distribution useful?

Bivariate Distribution for Discrete RVs:
 A Closer Look

- Joint pmf of (X, Y): all possible values (x, y) and their probabilities
- Probability in each cell: $P(X=x, Y=y) \rightarrow$ notation: $p(x, y)$

$$
\rightarrow \text { interpretation: } P(X=x \text { and } Y=y)
$$

- Sum of all values $=1$
- Marginal pmf of $X \rightarrow$ sum of probabilities across columns: $p_{X}(x)$
- Marginal pmf of $Y \rightarrow$ sum of probabilities across rows: $p_{Y}(y)$
- Conditional pmf of Y given $\mathrm{X}=0 \rightarrow$ sum of probabilities across row $X=0$ divided by row probability: $p_{Y}(y \mid X=0)$
- What is the probability that a randomly selected student has dyed hair but no pierced ears?
- What is the probability that among those with dyed hair, a randomly selected student has no pierced ears?

Expected value and variance of $h(X, Y)$

- Let $h(X, Y)$ be a new random variable that is a function of (depends on) the bivariate random variable (X, Y)
- Special case: $h(X, Y)=X$ or $h(X, Y)=Y$
- Can use the marginal pmf of X or Y to compute expected value and variance
- Another special case: $h(X, Y)=a X+b Y+c \rightarrow$ linear combination
- More complex : $\mathrm{h}(\mathrm{X}, \mathrm{Y})=\mathrm{XY}$
- $E[h(X, Y)]=$ sum of $[h(x, y)$ times $p(x, y)]$ over all possible values of (x, y)
- $\operatorname{var}[h(X, Y)]=\operatorname{sum}$ of $\left[h(x, y)-E[h(X, Y)]^{2}\right.$ times $\left.p(x, y)\right]$ over all possible values of (x, y)

Example

- There are three fixed-price dinners at a restaurant: $\$ 12, \$ 15, \$ 20$. Suppose you pick a randomly selected pair (of man and woman) having dinner at the restaurant:
- Let $X=$ cost of the man's dinner; $Y=$ cost of woman's dinner
- What are the marginal pmf's of X and Y ?
- Is $E(X)$ larger than $E(Y)$?
- What is the probability that the
man's dinner costs more than the woman's?

$p(x, y)$				
	12	15	20	
	12	.05	.05	.10
	15	.05	.10	.35
	20	0	.20	.10

- Suppose the customers are told after the dinner that they will get a refund of the difference between the costs of the more expensive and less expensive meal.
- What is $\mathrm{h}(\mathrm{X}, \mathrm{Y})$?
- What is the expected refund?
- If customers know this before hand and want to maximize the refund, what will the joint distribution be?

Bivariate RV (X, Y): Covariance of X and Y

- Covariance is of special interest
- $\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{\mathrm{X}}\right)\left(\mathrm{Y}-\mu_{\mathrm{Y}}\right)\right] \leftarrow$ definition
- Variance can be thought of as a special case
- Sample version?
- Interpretation - covarying
- Interpretations when negative, positive, or (close to) zero
- Computation:
- Take each possible value of $\left(x-\mu_{\mathrm{x}}\right)\left(\mathrm{y}-\mu_{\mathrm{y}}\right)$
- Multiply by its probability
- Sum up over all values to get covariance
- $\mathrm{X}=$ Dyes hair; $\mathrm{Y}=$ Pierces ear

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$					
0	0.4	0.1	0			$-\mathbf{0 . 6}$	$\mathbf{0 . 4}$	$\mathbf{1 . 4}$
1	0.1	0.3	0.1		-0.5	0.4	0.1	0
1	+0.5	0.1	0.3	0.1				

- $\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=\operatorname{sum}$ of $\left(X-\mu_{X}\right)\left(y-\mu_{Y}\right)$ times the probabilities

$$
=(-0.5)(-0.6(0.4)+(-0.5)(0.4)(0.1)+\ldots+(0.5)(1.4)(0.1)=?
$$

Covariance of X and Y : Alternate expression

- $\operatorname{cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \rightarrow$ notation $\sigma_{X Y}$
- $E\left[\left(X-\mu_{\mathrm{X}}\right)\left(\mathrm{Y}-\mu_{\mathrm{Y}}\right)\right]=\mathrm{E}(\mathrm{XY})-\left(\mu_{\mathrm{X}} \mu_{\mathrm{Y}}\right) \rightarrow$ Why?
- Easier to compute
- $E(X Y)$ = take each possible value of (xy), multiply by its probability and sum over all values
- X = Dyes hair; Y = Pierces ear

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
0	0.4	0.1	0
1	0.1	0.3	0.1

- $E(X Y)=(0)(0)(0.4)+(0)(1)(0.1)+(0)(2)(0)+(1)(0)(0.1)+(1)(1)(0.3)+(1)(2)(0.1)$

$$
=0.3+0.2=0.5
$$

- $\mu_{\mathrm{X}}=0.5 ; \mu_{\mathrm{y}}=0.6$
- $\operatorname{cov}(X, Y)$ or $\sigma_{X Y}=E(X Y)-\left(\mu_{\mathrm{X}} \mu_{Y}\right)=0.5-(0.5)(0.6)=0.5-0.3=0.2 \leftarrow$ positive
- Positive relationship between dying hair and piercing ear
- Is this a strong relationship?

Correlation (and Covariance)

- $\operatorname{Cov}(X, Y) \rightarrow$ hard to interpret the magnitude
- Depends on the variability of X and Y (units of observations, etc.)

Standardize the covariance \rightarrow divide by the product of the standard deviations

$$
\operatorname{Cor}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)}) \sqrt{\operatorname{Var}(Y)}}
$$

- Correlation is dimension free (no unit of measurement)
- Value is always between - 1 and 1
- Correlation of - $1 \rightarrow$ strong negative (linear) relationship between X and Y
- Correlation of $+1 \rightarrow$ strong positive (linear) relationship between X and Y
- Correlation of $0 \rightarrow$ no linear relationship between X and Y
- Correlation is not the same thing as independence

Back to hair/ear example

- $X=$ dyes hair; $Y=$ pierces ear

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
0	0.4	0.1	0
1	0.1	0.3	0.1

- $\operatorname{cov}(X, Y)=E(X Y)-\left(\mu_{X} \mu_{Y}\right)=0.5-(0.5)(0.6)=0.5-0.3=0.2$ (from before)
- $\operatorname{var}(X)=E\left(X^{2}\right)-\left(\mu_{X}\right)^{2}=\left(1^{2}\right)(0.5)-(0.5)^{2}=0.25 \rightarrow \sigma_{X}=0.5$
- $\operatorname{var}(\mathrm{Y})=\mathrm{E}\left(\mathrm{Y}^{2}\right)-\left(\mu_{\mathrm{Y}}\right)^{2}=\left(1^{2}\right)(0.4)+\left(2^{2}\right)(0.1)-\left((0.6)^{2}=0.44 \rightarrow \sigma_{\mathrm{Y}}=0.663\right.$
- $\operatorname{Cor}(X, Y)=0.2 /(0.0 .5)(0.663)=0.60$
- Let's consider the question from before:
- Positive relationship between dying hair and piercing ear
- Is this a strong relationship?

Independence

- Are X and Y independent for the joint pmf below?

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$p_{X}(x)$
0	0.25	0.2	0.05	0.5
1	0.25	0.2	0.05	0.5
				Total
$p_{Y}(Y) \rightarrow$	0.5	0.4	0.1	1.0

- If X and Y are independent, you can get the joint pmf by taking the product of the two marginal pmfs
- $p(x, y)=p_{x}(x) p_{y}(y)$ for all possible values (x, y)
- Same true for cdf: $F(x, y)=F_{x}(x) F_{y}(y)$
- If X and Y are independent, $\operatorname{cov}(\mathrm{X}, \mathrm{Y})=0 \longleftrightarrow \rightarrow \operatorname{cor}(\mathrm{X}, \mathrm{Y})=0$
- Why?
- Converse if not true: $\operatorname{Cor}(\mathrm{X}, \mathrm{Y})=0$ does not mean they are independent

Joint distribution for continuous RVs

- (X, Y) continuous RVs
- Joint distribution:
- Joint pdf $f(x, y) \rightarrow$ non-negative; not a probability
- Joint cdf F(x, y)
- Marginal pdf's of X and $Y: f_{X}(x)$ and $f_{Y}(y)$
- Computation of covariance and correlation based on the same ideas as before
- But now involve weighting by the $\operatorname{pdf} f(x, y)$ and integrating over the range of (x, y) rather than by weighting and summing over the possible values as in the discrete case
- Most interesting case for us:
- Bivariate normal distribution of (X, Y)

Bivariate Normal Distribution

- Joint density of bivariate normal (from "Multivariate Gaussian". Licensed under CC BY-SA 3.0 via Commons - https://commons.wikimedia.org/wiki/File:Multivariate Gaussian.png\#/)
- Characterized by:

- Mean and SD of $X: \mu_{X}$ and σ_{x}
- Mean and SD of $Y: \mu_{Y}$ and σ_{Y}
- $\operatorname{Cor}(\mathrm{X}, \mathrm{Y}) \rightarrow$ sometimes called ρ - "rho" \rightarrow recall sample version is r
- Marginal distributions of X and Y are normal

Linear combination of bivariate RVs - expected value

- (X, Y) bivariate RV
- Discussed earlier: $h(X, Y) \rightarrow$ function of X and Y
- Special case: linear function or linear combination of RVs
$-h(X, Y)=a X+b Y+c$ for some numbers a, b, and c
- Examples:
$-X+Y, X-Y, 3 X-4 Y+10,(X+Y) / 2$
$-(X+Y) / 2=1 / 2 X+1 / 2 Y \rightarrow$ sample mean

$$
\begin{aligned}
E(a X+b Y+c) & =E(a X)+E(b Y)+E(c) \\
& =a E(X)+b E(Y)+c \\
& =a \mu_{X}+b \mu_{Y}+c
\end{aligned}
$$

- X and Y don't have to be independent.
- Examples above

Linear combination of many RVs - expected value

- Suppose we have n random variables: $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$
- Let Y be a new $R V$ given by the linear combination

$$
Y=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}
$$

- Examples:

$$
\begin{aligned}
& -Y=X_{1}+X_{2}+X_{3}, \text { or } Y=2 X_{1}-3 X_{2}+10 X_{3}-5 X_{4} \\
& -Y=X_{1}+X_{2}+\ldots+X_{n} \leftarrow \text { sum } \\
& -Y=\left(X_{1}+X_{2}+\ldots+X_{n}\right) / n \leftarrow \text { sample mean }
\end{aligned}
$$

$$
\begin{aligned}
E(Y) & =E\left(a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}\right) \\
& =E\left(a_{1} X_{1}\right)+E\left(a_{2} X_{2}\right)+\ldots+E\left(a_{n} X_{n}\right) \\
& =a_{1} \mu_{1}+a_{2} \mu_{2}+\ldots+a_{n} \mu_{n}
\end{aligned}
$$

- The RVs do not have to be independent
- Application to examples

Linear combination of bivariate RVs - variance

- (X, Y) bivariate RV
- $\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)+2 \operatorname{cov}(X, Y)$
- Intuition: take $\mathrm{Y}=\mathrm{X}$ or -X
- Reason for the general result?
- What is $\operatorname{var}(\mathrm{X}-\mathrm{Y})$?
- If X and Y are independent, $\operatorname{var}(X+Y)=\operatorname{var}(X)+\operatorname{var}(Y)$
- HOLDS ONLY WHEN X and Y ARE INDEPENDENT
- Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are iid with mean μ and variance σ^{2}
- What is the expected value and the variance of the sample mean?

Linear combination of independent RVs - variance

- Suppose we have n random variables $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$
- AND they are all independent
- Let Y be a new RV given by the linear combination

$$
Y=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}
$$

- Examples:

```
\(-Y=X_{1}+X_{2}+X_{3}\), or \(Y=2 X_{1}-3 X_{2}+10 X_{3}-5 X_{4}\)
\(-Y=X_{1}+X_{2}+\ldots+X_{n} \leqslant \operatorname{sum}\)
\(-Y=\left(X_{1}+X_{2}+\ldots+X_{n}\right) / n \leftarrow\) sample mean
```

$$
\begin{aligned}
& \operatorname{Var}(Y)=\operatorname{Var}\left(a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}\right) \\
& \quad=\operatorname{Var}\left(a_{1} X_{1}\right)+\operatorname{Var}\left(a_{2} X_{2}\right)+\ldots+\operatorname{Var}\left(a_{n} X_{n}\right) \\
& \quad=a_{1}{ }^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}{ }^{2} \operatorname{Var}\left(X_{2}\right)+\ldots+a_{n}{ }^{2} \operatorname{Var}\left(X_{n}\right)
\end{aligned}
$$

- Example: what is the variance of the sum? the sample mean?
- Interpretations
- What is SD?

