
5. Vector random variables

• If we have a collection of random variables Y1, Y2, . . . , Yn we can gather
them together into a vector random variable Y.

• Suppose that, for each i = 1, . . . , n we have E[Yi] = µi. Then, we write
E[Y] = µ for µ = (µ1, . . . , µn).

• Now, write Cov(Yi, Yj) = Vij for i 6= j and Var(Yi) = Cov(Yi, Yi) = Vij .
We call V = [Vij ]n×n the variance-covariance matrix for Y.

• We can also call V the covariance matrix or, more simply, just the
variance matrix. We write V = Var(Y).

Example. Let ε = (ε1, ε2, . . . , εn) be a vector consisting of n independent
random variables, each with mean zero and variance σ2. This is a common
model for measurement error on n measurements. We have

E[ε] = 0, Var(ε) = σ2I

where 0 = (0, . . . , 0) and I is the n× n identity matrix. The off-diagonal
entries of Var(ε) are zero since Cov(εi, εj) = 0 for i 6= j. For
measurement error models, we break our usual rule of using upper case
letters for random variables.



Example. A population version of the linear model

• First recall the sample version, which is

(LM3) y = Xb+ e,

where y is the measured response, X is an n× p matrix of explanatory
variables, b is chosen by least squares, and e is the resulting vector of
residuals.

• We want to build a random vector Y that provides a population model
for the data y. We write this as

(LM6) Y = Xβ + ε

where X is the same explanatory matrix as in (LM3), β = (β1, . . . , βp) is
an unknown coefficient vector (we don’t know the true population
coefficient!) and ε is measurement error with E[ε] = 0 and Var(ε) = σ2I.
• Our model (LM6) asserts that the process which generated the response
data y was like drawing a random vector Y consructed using a random
measurement error model with known matrix X for some fixed but
unknown value of β.



Motivation for finding the means and variances of linear
combinations of random variables

• Recall that the main purpose of having a probability model is so that we
can investigate the chance variation due to picking the sample.

• Recall that for (LM3), the least squares estimate is b =
(
XtX

)−1Xty.

• This is a statistic, which means a function of the data and not a random
variable. We cannot properly talk about the mean and variance of b.

• We can work out the mean and variance of
(
XtX

)−1XtY, as long as
we know how to work out the mean and variance of linear combinations.

• As long as Y = Xβ + ε is a useful probability model for the
relationship between the response variable y and the explanatory variable
X, calculations done with this model may be useful.



A digression on “useful” models

“Now it would be very remarkable if any system existing in the real world
could be exactly represented by any simple model. However, cunningly
chosen parsimonious models often do provide remarkably useful
approximations. For example, the law PV = RT relating pressure P ,
volume V and temperature T of an ideal gas via a constant R is not
exactly true for any real gas, but it frequently provides a useful
approximation and furthermore its structure is informative since it springs
from a physical view of the behavior of gas molecules. For such a model
there is no need to ask the question ‘Is the model true?’. If truth is to be
the whole truth the answer must be No. The only question of interest is
‘Is the model illuminating and useful.’ ” (Box, 1978)

“Essentially, all models are wrong, but some are useful.”
(Box and Draper, 1987)

• Perhaps the most useful statistical model ever is Y = Xβ + ε.

• Anything so widely used is also widely abused. Our task is to understand
Y = Xβ + ε so that we can be users and not abusers.



Mean of a linear combination, in matrix form

• The linear property of expectation lets us take expectation through a
summation. For any constants aij , with 1 ≤ i ≤ n and 1 ≤ j ≤ n, we get

E
[ n∑
j=1

aijYj

]
=

n∑
j=1

aijE[Yj ].

• In matrix form, with A = [aij ], this is E [AY] = AE[Y].

Example. For Y = Xβ + ε, we have E[Y] = Xβ + E[ε] = Xβ

Example. For β̂ =
(
XtX

)−1XtY, we have

E[β̂] = E
[(
XtX

)−1XtY] =
(
XtX

)−1XtE[Y] =
(
XtX

)−1XtXβ = β

• Interpretation: If the data y are well modeled as a draw from the
probability model Y = Xβ + ε, then the least squares estimate b is well
modeled by a random vector centered around β.



Linearity of expectation

• We have seen several versions of the same property that expectations
can be moved through sums and multiplicative constants:

E[aX + b] = aE[X] + b,

E

[
n∑

i=1

aiYi

]
=

n∑
i=1

aiE[Yi],

E

 n∑
j=1

aijYj

 =

n∑
j=1

aijE[Yj ].

E[AY] = AE[Y]

• These properties are collectively known as linearity.

• Why? Maybe because these properties mean that linear equations for
random variables lead to linear equations for their expectations.

• The linearity property means E follows a distributive rule. We can
distribute E across sums just as we are used to doing in basic arithmetic.



Exercises using linearity

Question 5.1. Use basic properties of expectation, and the definition of

covariance, to show that Cov
(
aX + b, cY + d

)
= acCov(X,Y ).

Question 5.2. Show that Cov(X,Y + Z) = Cov(X,Y ) + Cov(X,Z) and
Cov

(
X,
∑n

j=1 Yj
)
=
∑n

j=1Cov(X,Yj).



Moving sums through covariance

Question 5.3. Using Question 5.2, show that

Cov
(∑m

i=1 Yi,
∑n

j=1 Zj

)
=
∑m

i=1

∑n
j=1Cov(Yi, Zj).

• This formula is sometimes called the bilinearity of covariance, since
Cov(Y, Z) is linear in Y and linear in Z.

• This is also our first use of double summation.

• Think of
∑m

i=1

∑n
j=1 as summing all the entries in an m× n table, or

equivalently, summing entries in an m× n matrix of covariances.



Variance of a sum

Question 5.4. Using Question 5.3, show that

Var
(∑n

i=1 Yi
)
=
∑n

i=1Var(Yi) + 2
∑

i<j Cov(Xi, Xj).

• Thinking of
∑n

i=1

∑n
j=1 as summing all the entries in an n× n table,∑

i<j means summing over all the entries above the diagonal.

• Covariance is symmetric, meaning Cov(Y,Z) = Cov(Z, Y ), and so
the table of covariances is symmetric about its diagonal.

• Thinking of the table of covariances as a matrix, the covariance matrix is
called a symmetric matrix.



The covariance matrix of a linear combination

• Suppose the length n random vector Y has variance matrix VY .

• Let A = [aij ] be an m× n matrix and let Z = AY.

• Z is a length m random vector. Call its variance matrix VZ .

• Can we find VZ if we know VY and A?

• Doing this will let us find the variances and correlations between any
collection of linear combinations of Y, a useful thing for working with the
linear model.

• To find the entries in the m×m covariance matrix VZ , we need to work
out Cov(Zi, Zj) for each entry (i, j) in the matrix.

• Recall that Zi =
∑n

k=1 aikYk.

• Since Zi and Zj are linear combinations of Y, we can use our formulas
for bilinearity of covariance (a consequence of linearity of expectation
combined with the definition of covariance) to find Cov(Zi, Zj).



Covariance of Zi = [AY]i and Zj = [AY]j

Question 5.5. Show that Cov(Zi, Zj) =
∑n

k=1

∑n
`=1 aikaj`[VY ]k`

Question 5.6. Show that VZ = AVY At.



Covariance of the least squares coefficients

• The covariance matrix formula we just developed can be written as

Var(AY) = AVar(Y)At.

Question 5.7. Consider the linear model Y = Xβ + ε with E[ε] = 0 and

Var(ε) = σ2I. Apply this variance formula to β̂ =
(
XtX

)−1XtY to get

Var(β̂) = σ2
(
XtX

)−1



Standard errors for the linear model

• The formula Var(β̂) = σ2
(
XtX

)−1
needs extra work to be useful for

data analysis.

• In practice, we know the model matrix X but we don’t know the
measurement standard deviation σ.

• An estimate of the measurement error is the sample standard deviation
of the residuals.

• For y = Xb+ e with X being n× p, an estimate of σ is

s =
√

1
n−p

∑n
i=1

(
yi − ŷi

)2
=
√

1
n−p

∑n
i=1

(
yi − [Xb]i

)2
• We will discuss later why we choose to divide by n− p.

• The standard error of bk for k = 1, . . . , p is

SE(bk) = s
√[(

XtX
)−1]

kk

• SE(bk) is an estimate of
√[

Var(β̂)
]
kk

.

• Let’s check we now understand how lm() gets standard errors in R.

lm()


lm1 <- lm(L_detrended~U_detrended) ; summary(lm1)

##

## Call:

## lm(formula = L_detrended ~ U_detrended)

##

## Residuals:

## Min 1Q Median 3Q Max

## -1.55654 -0.48641 -0.01867 0.40856 1.63118

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.28999 0.09343 3.104 0.00281 **

## U_detrended 0.13137 0.06322 2.078 0.04161 *

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.7705 on 66 degrees of freedom

## Multiple R-squared: 0.06141,Adjusted R-squared: 0.04718

## F-statistic: 4.318 on 1 and 66 DF, p-value: 0.04161



How does R obtain linear model standard errors?

• The previous slide shows output from our analysis of unemployment and
mortality from Chapter 1.

• Let’s first extract the estimates and their standard errors from R, a good
step toward reproducible data analysis.

names(summary(lm1))

## [1] "call" "terms" "residuals"

## [4] "coefficients" "aliased" "sigma"

## [7] "df" "r.squared" "adj.r.squared"

## [10] "fstatistic" "cov.unscaled"

summary(lm1)$coefficients

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.2899928 0.09343146 3.103802 0.002812739

## U_detrended 0.1313673 0.06321939 2.077959 0.041606370



Extracting the design matrix

X <- model.matrix(lm1)

head(X)

## (Intercept) U_detrended

## 16 1 -1.0075234

## 17 1 1.1027941

## 18 1 0.4881116

## 19 1 -1.5349043

## 20 1 -1.8662535

## 21 1 -2.0059360



Computing the SE directly

s <- sqrt(sum(resid(lm1)^2)/(nrow(X)-ncol(X))) ; s

## [1] 0.7704556

V <- s^2 * solve(t(X)%*%X)

sqrt(diag(V))

## (Intercept) U_detrended

## 0.09343146 0.06321939

summary(lm1)$coefficients

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.2899928 0.09343146 3.103802 0.002812739

## U_detrended 0.1313673 0.06321939 2.077959 0.041606370


