
6. Hypothesis testing and confidence intervals

We have the following goals:

• Understand how to construct confidence intervals for parameters in a
linear model.

• Understand how to test statistical hypotheses about a linear model.

• In particular, to ask and answer the question: “Are the data consistent
with a hypothesis that a covariate, or a collection of covariates, are
unimportant?” (What is the fundamental scientific importance of the
slightly contorted logical reasoning in this question?)

• Learn to use R to carry out these tasks.

• See how the linear model includes and extends basic tests for means of
one and two samples.



Confidence intervals

• An interval [u, v] constructed using the data y is said to cover a
parameter θ if u ≤ θ ≤ v.

• [u, v] is a 95% confidence interval (CI) for θ if the same construction,
applied to a large number of draws from the model, would cover θ 95% of
the time.

• A parameter is a name for any unknown constant in a model. In linear
models,each component β1, . . . , βp of the coefficient vector β is a
parameter. So is the variance σ2 of the measurement error.

• A confidence interval is the usual way to represent the amount of
uncertainty in an estimated parameter.

• The parameter is not random. According to the model, it has a fixed but
unknown value.The observed interval [u, v] is also not random. An
interval [U, V ] constructed using a vector of random variables Y defined
in a probability model is random.

• If the model is appropriate, then it is reasonable to treat the data y like
a realization from the probability model.



A confidence interval for the coefficient of a linear model

• Consider estimating β1 in the linear model Y = Xβ + ε.

• Recall that E[β̂1] = β1 and SD(β̂1) = σ
√[(

XtX
)−1]

11
.

Question 6.1. Supposing we can make a normal approximation, show
that P

[
β̂1 − 1.96 SD(β̂1) ≤ β1 ≤ β̂1 + 1.96 SD(β̂1)

]
= 0.95

• Therefore, an approximate 95% CI for β1 is[
b1 − 1.96 SE(b1) , b1 + 1.96 SE(b1)

]
where y = Xb+ e with SE(b1) = s

√[(
XtX

)−1]
11

.



A CI for association between unemployment and mortality

c1 <- summary(lm(L_detrended~U_detrended))$coefficients ; c1

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.2899928 0.09343146 3.103802 0.002812739

## U_detrended 0.1313673 0.06321939 2.077959 0.041606370

beta_U <- c1["U_detrended","Estimate"]

SE_U <- c1["U_detrended","Std. Error"]

z <- qnorm(1-0.05/2) # for a 95% CI using a normal approximation

cat("CI = [", beta_U - z * SE_U, ",", beta_U + z * SE_U, "]")

## CI = [ 0.0074596 , 0.2552751 ]

Interpretation. We appear to have found evidence that each percentage
point of unemployment above trend is associated with about 0.13 years of
additional life expectancy. The 95% CI doesn’t include zero.

Question 6.2. Do you believe this discovery? How could you criticize it?



Association is not causation

“Whatever phenomenon varies in any manner whenever another
phenomenon varies in some particular manner, is either a cause or an
effect of that phenomenon, or is connected with it through some fact of
causation.” (John Stuart Mill, A System of Logic, Vol. 1. 1843. p. 470.

• Put differently: If A and B are associated statistically, we can infer that
either A causes B, or B causes A, or both have some common cause C.

• A useful mantra: Association is not causation.

• Writing a linear model where A depends on B can show association but
we need extra work to argue B causes A. We need to rule out A causing
B and the possibility of any common cause C.

Question 6.3. Discuss the extent to which the association between
detrended unemployment and life expectancy can and cannot be
interpreted causally.



A review of progress so far in this course

Producing and understanding this confidence interval for a linear
model brought together all the things we’ve done so far in this
course.

• We needed to get the data into a computer and run statistical software.

• To understand what the computer was doing for us, and help us to
command it correctly, we needed to know about:

1 matrices
2 writing a linear model and fitting it by least squares
3 probability models
4 expectation and variance
5 the normal distribution

You could run computer code by learning to follow line-by-line
instructions without understanding what the instructions do. But
then you wouldn’t be in control of your own data analysis.



Hypothesis tests

• We try to see patterns in our data. We hope to discover phenomena
that will advance science, or help the environment, or reduce sickness and
poverty, or make us rich, . . .

• How can we tell whether our new theory is like seeing animals or faces in
the clouds?

• From Wikipedia: “Pareidolia is a psychological phenomenon in which
the mind responds to a stimulus ... by perceiving a familiar pattern where
none exists (e.g. in random data)”.

• The research community has set a standard: The evidence presented to
support a new theory should be unlikely under a null hypothesis that the
new theory is false. To quantify unlikely we need a probability model.



Hypothesis tests and the scientific method

• From a different perspective, a standard view of scientific progress holds
that scientific theories cannot be proved correct, they can only be falsified
(https://en.wikipedia.org/wiki/Falsifiability).

• Accordingly, scientists look for evidence to refute the null hypothesis
that data can be explained by current scientific understanding.

• If the null hypothesis is inadequate to explain data, the scientist may
propose an alternative hypothesis which better explains these data.

• The alternative hypothesis will subsequently be challenged with new
data.

https://en.wikipedia.org/wiki/Falsifiability


The scientific method in statistical language

1 Ask a question
2 Obtain relevant data.
3 Write a null and alternative hypothesis to represent your

question in a probability model. This may involve writing a linear
model so that β1 = 0 corresponds to the null hypothesis of “no
effect” and β1 6= 0 is a discovered “effect.”

4 Choose a test statistic. The sample test statistic is a quantity
computed using the data summarizing the evidence against the null
hypothesis. For our linear model example, the least squares coefficient
b1 is a natural statistics to test the hypothesis β1 = 0.

5 Calculate the p-value, the probability that a model-generated test
statistic is at least as extreme as that observed. For our linear model
example, the p-value is P

[
|β̂1| > |b1|

]
. We can find this probability,

when β1 = 0, using a normal approximation.
6 Conclusions. A small p-value (often, < 0.05) is evidence for

rejecting the null hypothesis. The data analysis may suggest new
questions: Return to Step 1.



Using confidence intervals to construct a hypothesis test

• It is often convenient to use the confidence interval as a sample test
statistic.

• If the confidence interval doesn’t cover the null hypothesis, then we have
evidence to reject that null hypothesis.

• If we do this test using a 95% confidence interval, we have a 5% chance
that we reject the null hypothesis if it is true. This follows from the
definition of a confidence interval: whatever the true unknown value of a
parameter θ, a model-generated confidence interval covers θ with
probability 0.95.



Some notation for hypothesis tests

• The null hypothesis is H0 and the alternative is Ha.

• We write t for the sample test statistic calculated using the data y. We
write T for the model-generated test statistic, which is a random variable
constructed by calculating the test statistic using a random vector Y
drawn from the probability model under H0.

• The p-value is pval = P
[
|T | ≥ |t|

]
. Here, we are assuming “extreme”

means “large in magnitude.” Occasionally, it may make more sense to use
pval = P

[
T ≥ t

]
.

• We reject H0 at significance level α if pval < α. Common choices of α
are α = 0.05, α = 0.01, α = 0.001.

Question 6.4. When we report the results of a hypothesis test, we can
either (i) give the p-value, or (ii) say whether H0 is rejected at a particular
significance level. What are the advantages and disadvantages of each?



Careful terminology for test statistics

• Recall that a sample test statistic is a summary of the data,
constructed to test a hypothesis.

• A model-generated test statistic is the same summary applied to
random variables drawn from a probability model. Usually, this probability
model represents the null hypothesis. We can say “model-generated test
statistic under H0” to make this explicit.

• When we just say test statistic we are talking about the procedure used
to obtain the summary.

• Data analysts don’t always explicitly distinguish between sample test
statistics and model-generated test statistics. However, the difference is
critical to the logic of hypothesis testing.

Example: testing whether β1 = 0 in the linear model Y = Xβ + ε,

• The sample test statistic is b1 =
[(
XtX

)−1Xty
]
1
.

• A model-generated test statistic is β̂1 =
[(
XtX

)−1XtY
]
1
.

• The test statistic is least-squares estimation of the coefficient.



A hypothesis test for unemployment and mortality

Question 6.5. Write a formal hypothesis test of the null hypothesis that
there is no association between unemployment and mortality. Compute a
p-value using a normal approximation. What do you think is an appropriate
significance level α for deciding whether to reject the null hypothesis?



Normal approximations versus Student’s t distribution

• Notice that summary(lm(...)) gives tvalue and Pr(>|t|).

• The tvalue is the estimated coefficient divided by its standard error.
This measures how many standard error units the estimated coefficient is
from zero.

• Pr(>|t|) is similar, but slightly larger, than the p-value coming from
the normal approximation.

• R is using Student’s t distribution, which makes allowance for chance
variation from using s as an approximation to σ when we compute the
standard error.

• R uses a t random variable to model the distribution of the statistic t.
Giving the full name (Student’s t distribution) may add clarity.

• With sophisticated statistical methods, it is often hard to see if they
work well just by reading about them. Fortunately, it is often relatively
easy to do a simulation study to see what is going on.

summary(lm(...))
t value
Pr(>|t|)
t value
Pr(>|t|)


Simulating from Student’s t distribution

• Suppose X,X1, . . . , Xd are d+ 1 independent identially distributed (iid)
normal random variables with mean zero and standard deviation σ.

• We write X,X1, . . . , Xd ∼ iid N [0, σ].

• Student’s t distribution on d degrees of freedom is defined to be the

distribution of T = X/σ̂ where σ̂ =
√

1
d

∑d
i=1X

2
i .

• A normal approximation would say T is approximately N [0, 1] since σ̂ is
an estimate of σ.

• With a computer, we can simulate T many times, plot a histogram, and
compare it to the probability density function of the normal distribution
and Student’s t distribution.

• The goals in doing this:

1 Some practice working with Student’s t distribution.
2 Finding how the t distribution compares to the normal distribution as
d varies.

3 Practice the skill of designing a simulation experiment.



• Let’s start by simulating a matrix X of iid normal random variables.

N <- 50000 ; sigma <- 1 ; d <- 10 ; set.seed(23)

X <- matrix(rnorm(N*(d+1),mean=0,sd=sigma),nrow=N)

• Now, we write a function that computes T given X1, . . . , Xd, X

T_evaluator <- function(x) x[d+1] / sqrt(sum(x[1:d]^2)/d)

• Then, use apply() to evaluate T on each row of ‘X‘.

Tsim <- apply(X,1,T_evaluator)

• A histogram of these simulations can be compared with the normal
density and the t density

hist(Tsim,freq=F,main="",

breaks=30,ylim=c(0,0.4))

x <- seq(length=200,

min(Tsim),max(Tsim))

lines(x,dnorm(x),

col="blue",

lty="dashed")

lines(x,dt(x,df=d),

col="red")

X
apply()


Comparing the normal and t distributions

• Even with as few as d = 10 degees of freedom to estimate σ, the
Student’s t density looks similar to the normal density.

• Student’s t has fatter tails. This is important for the probability of rare
extreme outcomes.
• Here, the largest and smallest of the N = 5× 104 simulations are

range(Tsim)

## [1] -6.438830 6.480262

• Let’s check the chance of an outcome more than 5 (or 6) standard
deviations from the mean for the normal distribution and the t on 10
degrees of freedom.

2*(1-pnorm(5))

## [1] 5.733031e-07

2*(1-pnorm(6))

## [1] 1.973175e-09

2*(1-pt(5,df=d))

## [1] 0.0005373336

2*(1-pt(6,df=d))

## [1] 0.0001321089



Hypothesis tests for groups of parameters

• We’ve seen how the least squares coefficient can be used as a test
statistic for the null hypothesis that a parameter in a linear model is zero.

• Sometimes we want to test many parameters at the same time. For
example, when analyzing the field goal kicking data, we must decide
whether to have a separate intercept for each player.

Question 6.6. There are 19 kickers in the dataset. How many extra
parameters are needed if we add an intercept for each player?

• This type of question is called model selection. Our test statistic should
compare goodness of fit with and without the additional parameters.

• We need to know the distribution of the model-generated test statistic
under the null hypothesis to find the p-value for the test.



Residual sum of squares to quantify goodness of fit

Let y be the data. Let H0 be a linear model, Y = Xβ + ε. Let Ha extend
H0 by adding d additional explanatory variables.

• Let RSS0 be the residual sum of squares for H0. The residual errors are
e = y − Xb where b =

(
XtX

)−1Xty. So, RSS0 =
∑n

i=1 e
2
i .

• Let RSSa be the residual sum of squares for Ha.

• Residual sum of squares is a measure of goodness of fit. A small residual
sum of squares suggests a model that fits the data well.

Question 6.7. It is always true that RSSa ≤ RSS0. Why?

• We want to know how much smaller RSSa has to be than RSS0 to give
satisfactory evidence in support of adding the extra explanatory variables
into our model. In other words, when should we reject H0 in favor of Ha?



The f statistic for adding groups of parameters

Formally, we have H0 : Y = Xβ + ε and Ha : Y = Xaβa + ε, where X is
an n× p matrix and Xa = [X Z ] is an n× q matrix with q = p+ d. Here,
Z is a n× d matrix of additional explanatory variables for Ha. As usual,
we model ε1, . . . , εn as iid N [0, σ].

• Consider the following sample test statistic:

f =
(RSS0 − RSSa)/d

RSSa/(n− q)
.

• The denominator is an estimate of σ2 under Ha. Using this denominator
standardizes the test statistic.

• The numerator (RSS0 − RSSa)/d is the change in RSS per degree of
freedom. Parameters in linear models are often interpreted as degrees of
freedom of the model.

• Let F be a model-generated version of f , with the data y replaced by a
random vector Y. If H0 is true, then the RSS per degree of freedom
should be about the same on the numerator and the denominator, so
F ≈ 1. Large values, f � 1, are therefore evidence against H0.



The F test for model selection

• Under H0, the model-generated F statistic has an F distribution on d
and n− q degrees of freedom.

• Because of the way we constructed the F statistic, its distribution under
H0 doesn’t depend on σ. It only depends on the dimension of X and Xa.

• We can obtain p-values for the F distribution in R using pf(). Try ?pf.

• Testing H0 verus Ha using this p-value is called the F test.

• When we add a single parameter, so d = 1 and q = p+ 1, the F test is
equivalent to carrying out Student’s t test using the estimated coefficient
as the test statistic. As homework, you are asked to check this using
pt() and pf() in R.

• Degrees of freedom are mysterious. The mathematics for how they work
involves matrix algebra beyond this course. An intuition is that fitting a
parameter that is not in the model “explains” a share of the residual sum
of squares; in an extreme case, fitting n parameters to n data points may
give a perfect fit (residual sum of squares = zero) even if none of these
parameters are in the true model.

pf()
?pf
pt()
pf()


The F test is called “analysis of variance”

• The F test was invented before computers existed.

• Working out the sums of squares efficiently, by hand, was a big deal!

• Sums of squares of residuals are relevant for estimating variance.

• Building F tests is historically called analysis of variance or abbreviated
to ANOVA.

• The sums of squares and corresponding F tests are presented in an
ANOVA table. We will see one in the following data analysis.



An F test for kickers. (i) Reviewing the data

goals <- read.table("FieldGoals2003to2006.csv",header=T,sep=",")

goals[1:5,c("Name","Teamt","FGt","FGtM1")]

## Name Teamt FGt FGtM1

## 1 Adam Vinatieri NE 73.5 90.0

## 2 Adam Vinatieri NE 93.9 73.5

## 3 Adam Vinatieri NE 80.0 93.9

## 4 Adam Vinatieri IND 89.4 80.0

## 5 David Akers PHI 82.7 88.2

lm0 <- lm(FGt~FGtM1+Name,data=goals)

• This is model syntax we have not seen before.
• Name is a factor

class(goals$Name)

## [1] "factor"

• A factor is a vector with levels. Here, the levels are the kicker names.

Name


An F test for kickers. (ii) Checking the design matrix

X <- model.matrix(lm0)

dim(X)

## [1] 76 20

unname(X[c(1,5,9,13,17),1:8])

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

## [1,] 1 90.0 0 0 0 0 0 0

## [2,] 1 88.2 1 0 0 0 0 0

## [3,] 1 72.2 0 1 0 0 0 0

## [4,] 1 82.1 0 0 1 0 0 0

## [5,] 1 80.0 0 0 0 1 0 0

Question 6.8. Is this the design matrix that you want? Can we use our
experience working with design matrices to understand what R is doing?



An F test for kickers. (ii) Interpreting the ANOVA table

anova(lm0)

## Analysis of Variance Table

##

## Response: FGt

## Df Sum Sq Mean Sq F value Pr(>F)

## FGtM1 1 87.2 87.199 2.2597 0.1383978

## Name 18 2252.5 125.137 3.2429 0.0003858 ***

## Residuals 56 2161.0 38.589

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Question 6.9. Focus on the row labeled Name. Explain what is being
tested, how it is being tested, and what you conclude.

Name


Predicting future outcomes using a linear model

• Consider the sample linear model y = Xb+ e, where X = [xij ]n×p.

• We might be interested in predicting outcomes at some new set of
explanatory variables x∗ = (x∗1, . . . , x

∗
p), treated as a 1× p row vector.

Question 6.10. Why do we want x∗ to be a row vector not a column
vector?

• Making a prediction involves estimating (i) the expected value of a new
outcome; (ii) its variability. In addition, we must make allowance for the
statistical uncertainty in these estimates.

• To do inference, we need a probability model. As usual, consider
Y = Xβ + ε where ε1, . . . , εn are iid N [0, σ]. Also, model a new
measurement at x∗ as

Y ∗ = x∗β + ε∗

where ε∗ is another independent draw from the measurement model.

• Note that the dimension of x∗β is (1× p)× (p× 1) = 1× 1.



The expected value of a new outcome and its uncertainty

• According to the model, the expected value of a new outcome at x∗ is

E[Y ∗] = x∗β.

• But, we don’t know β. We estimate β by the sample least squares
coefficient b =

(
XtX

)−1Xty, which is modeled as a realization of the

model-generated least squares coefficient β̂ =
(
XtX

)−1XtY.

• A sample estimate of the expected value is the fitted value at x∗

ŷ∗ = x∗b =
∑p

j=1 x
∗
jbj .

• The model-generated estimate of the expected value is

Ŷ ∗ = x∗β̂ =
∑p

j=1 x
∗
j β̂j .

• We can find the mean and variance of Ŷ ∗. We can use these (together
with a normal approximation) to find a confidence interval for E[Y ∗]. If
the model is reasonable, this will tell us the uncertainty in using ŷ∗ to
estimate the sample average of many new outcomes collected at x∗.



Question 6.11. Show that E[Ŷ ∗] = x∗β

Question 6.12. Show that Var[Ŷ ∗] = σ2x∗(XtX
)−1

x∗t

Question 6.13. Check the dimension of Var[Ŷ ∗]. Is this correct?



A CI for the expected value of a new outcome

• We can get a confidence interval (CI) for the linear combination of
coefficients x∗β in a similar way to what we did for a single coefficient.

• A standard error is SE(x∗b) = s
√

x∗
(
XtX

)−1
x∗t.

• Then, making a normal approximation, a 95% CI is
[x∗b− 1.96 SE(x∗b) , x∗b+ 1.96 SE(x∗b)].

Example. We consider again the data on freshman GPA, ACT exam
scores and percentile ranking of each student within their high school for
705 students at a large state university. We seek to predict using the
probability model considered in the midterm exam, where freshman GPA is
modeled to depend linearly on ACT score and high school ranking.

gpa <- read.table("gpa.txt",header=T); gpa[1,]

## ID GPA High_School ACT Year

## 1 1 0.98 61 20 1996



Question. Find a 95% confidence interval for the expected freshman GPA
among students with an ACT score of 20 ranking at the 40th percentile in
his/her high school.
Solution
lm1 <- lm(GPA~ACT+High_School,data=gpa)

x <- c(1,20,40)

pred <- x%*%coef(lm1)

V <- summary(lm1)$cov.unscaled

s <- summary(lm1)$sigma

SE_pred <-sqrt(x%*%V%*%x)*s

c <- qnorm(0.975)

cat("CI = [", round(pred-c*SE_pred,3),

",", round(pred+c*SE_pred,3), "]")

## CI = [ 2.344 , 2.532 ]

• Notice how R guesses whether to interpret a vector as a row or column,
depending on the situation.

Question 6.14. How would you check whether your answer is plausible?
How would you check the R calculation has done what you want it to do?



A prediction interval for a new outcome

• A 95% prediction interval for a new outcome of a linear model with
explanatory variables x∗ covers the outcome with probability 95%.

• The prediction interval allows for the uncertainty around the mean,
usually called measurement error, in the outcome.

• Formally, the prediction interval aims to cover Y ∗ = x∗β + ε∗ whereas
the confidence interval for the mean only aims to cover E[Y ∗] = x∗β.

• Since ε∗ is independent of x∗β̂ (why?), we have

Var[Y ∗ − x∗β̂] = Var[Y ∗ − x∗β] + Var[x∗β − x∗β̂]

= σ2 + σ2x∗(XtX
)−1

x∗t

• This suggests using a standard error for prediction of

SEpred = s

√
1 + x∗

(
XtX

)−1
x∗t

• A 95% prediction interval, using a normal approximation, is
[x∗b− 1.96 SEpred , x

∗b+ 1.96 SEpred].

• We could use a t quantile. With 705 observations, the normal quantile
1.96=qnorm(0.975) is equivalent to 1.96=qt(0.975,df=702)

1.96=qnorm(0.975)
1.96=qt(0.975,df=702)


plot(x=fitted.values(lm1),y=gpa$GPA,ylab="GPA")

abline(a=0,b=1)

Question 6.15. Is the linear model a good fit for the data? What
cautions do you recommend when using this model for prediction?



Question. Find a 95% prediction interval for the freshman GPA of an
incoming student with an ACT score of 20 ranking at the 40th percentile
in his/her high school.
Solution
lm1 <- lm(GPA~ACT+High_School,data=gpa)

x <- c(1,20,40)

pred <- x%*%coef(lm1)

V <- summary(lm1)$cov.unscaled

s <- summary(lm1)$sigma

SE_pred <-sqrt(x%*%V%*%x + 1)*s

c <- qnorm(0.975)

cat("prediction interval = [", round(pred-c*SE_pred,3),

",", round(pred+c*SE_pred,3), "]")

## prediction interval = [ 1.322 , 3.553 ]

Question 6.16. Where does this calculation differ from the confidence
interval?


