
8. Additional topics in linear modeling

Outline

• We now have practical skills to

1 Write down linear models,
2 Fit them in R,
3 Interpret the output in terms of parameter estimates, confidence

intervals and hypothesis tests,
4 Check that R is fitting the model that we intend,
5 Check that the model we intend is appropriate for the data.

• These skills provide a foundation for many extensions helpful for
particuluar situations.



Topics

• The linear model formula notation in R, as a third model representation
to join the subscript format and matrix format.

• Interactions between explanatory variables.

• The R2 statistic to assess model fit.

• Fitting polynomial relationships using linear models.

• Multicollinearity: What happens when two or more explanatory variables
are highly correlated. How to notice it, and what to do about it.

• Power: What is the probability of rejecting the null hypothesis when the
alternative is true?



The R model formula notation

• A formula in lm() is something that looks like y~x.

• The R formula notation has various conventions that are designed to
make it easy to specify useful models.

• ?formula tells you everything you need to know, and more.

• The R formula for lm() is a way of constructing a design matrix.

• Inspect the resulting design matrix using model.matrix() and check
you understand what R has produced. If you can do this, you can safely
use the power of the formula notation.

Question 8.1. In a report, the model should be written in mathematical
notation, not as an R formula. Why?

lm()
y~x
?formula
lm()
model.matrix()


Experimenting with the R formula notation

• Consider the freshman GPA data

gpa <- read.table("gpa.txt",header=T); head(gpa,3)

## ID GPA High_School ACT Year

## 1 1 0.98 61 20 1996

## 2 2 1.13 84 20 1996

## 3 3 1.25 74 19 1996

• We can play the game of trying out various things in R formula notation,
inspecting the resulting design matrix, and figuring out how to write the
model efficiently in mathematical notation.

• You can also think about whether the different models give any new
insights into the data.



lm1 <- lm(GPA~ACT+High_School*Year,data=gpa)

coef(summary(lm1))[,1:2]

## Estimate Std. Error

## (Intercept) -4.722613e+01 1.350854e+02

## ACT 3.708961e-02 5.946966e-03

## High_School 3.460100e-01 1.702035e+00

## Year 2.428369e-02 6.760800e-02

## High_School:Year -1.681424e-04 8.518297e-04

• The * here denotes inclusion of an interaction between High_School

and Year, written in the R output as High_School:Year.

Question 8.2. Conceptually, what do you think an interaction between
two variables is, and why might it be needed?

• To find out exactly what R thinks an interaction is, we can check the
design matrix.

*
High_School
Year
High_School:Year


head(model.matrix(lm1))

## (Intercept) ACT High_School Year High_School:Year

## 1 1 20 61 1996 121756

## 2 1 20 84 1996 167664

## 3 1 19 74 1996 147704

## 4 1 23 95 1996 189620

## 5 1 28 77 1996 153692

## 6 1 23 47 1996 93812

Question 8.3. Write out the sample model that R has computed in lm1

using subscript notation.

lm1


Interactions and additivity

lm2 <- lm(GPA~ACT+High_School+Year+High_School:Year,data=gpa)

head(model.matrix(lm2),4)

## (Intercept) ACT High_School Year High_School:Year

## 1 1 20 61 1996 121756

## 2 1 20 84 1996 167664

## 3 1 19 74 1996 147704

## 4 1 23 95 1996 189620

• lm2 has the same design matrix as lm1.

• We see that, in R formula notation, y~u*v is the same as y~u+v+u:v.

• In the model y~u+v the effects of the variables are said to be additive.

• In a causal interpretation of an additive model, the result of changing u

to u2 and v to v2 is the sum of the marginal effect of changing u to u2

plus the marginal effect of changing v to v2.

• The interaction term u:v breaks additivity. In this case, we can’t know
the consequence for the fitted value of changing u to u2 unless we know
the value of v.

lm2
lm1
y~u*v
y~u+v+u:v
y~u+v
u
u2
v
v2
u
u2
v
v2
u:v
u
u2
v


The interaction between ACT and high school percentile

• We have not (yet) found any interesting effect of year. Let’s drop year
out of the model and look for whether there is an interaction between
ACT and high school percentile for predicting freshman GPA.

lm3 <- lm(GPA~ACT*High_School,data=gpa)

Question 8.4. Write out the fitted sample linear model in subscript form,
letting yi, ai, hi and ei be the freshman GPA, ACT score, high school
percentile and residual error respectively for the ith student.



Interpreting a discovered interaction

coef(summary(lm3))[,1:2]

## Estimate Std. Error

## (Intercept) 3.157679842 0.4788067771

## ACT -0.046067744 0.0213355076

## High_School -0.014405030 0.0061479608

## ACT:High_School 0.001071326 0.0002638611

Question 8.5. Explain in words to the admissions director what you have
found about the interaction under investigation here.



Marginal effects when there is an interaction

• Notice in ‘lm3‘ that the coefficients for ACT score and high school
percentile are negative. That is surprising!

ACT_centered <- gpa$ACT-mean(gpa$ACT)

HS_centered <- gpa$Hi - mean(gpa$Hi)

lm3b <- lm(GPA~ACT_centered*HS_centered,data=gpa)

signif(coef(summary(lm3b))[,c(1,2,4)],3)

## Estimate Std. Error Pr(>|t|)

## (Intercept) 2.94000 0.022900 0.00e+00

## ACT_centered 0.03640 0.005880 1.04e-09

## HS_centered 0.01190 0.001350 8.23e-18

## ACT_centered:HS_centered 0.00107 0.000264 5.46e-05

Question 8.6. After centering the variables, the interaction effect stays
the same, but the marginal effects change sign. What is happening? Why?



Quantifying the improvement in the model

s3 <- summary(lm3)$sigma

lm4 <- lm(GPA~ACT+High_School,data=gpa)

s4 <- summary(lm4)$sigma

lm5 <- lm(GPA~1,data=gpa)

s5 <- summary(lm5)$sigma

cat("s3 =",s3,"; s4 =",s4,"; s5 =",s5)

## s3 = 0.5610067 ; s4 = 0.5671605 ; s5 = 0.6345278

Question 8.7. Comment on both statistical significance and practical
significance of the interaction between a prediction of freshman GPA.



An interaction involving a factor

• Let’s go back to the football field goal data.

goals <- read.table("FieldGoals2003to2006.csv",header=T,sep=",")

goals[1,c("Name","Teamt","FGt","FGtM1")]

## Name Teamt FGt FGtM1

## 1 Adam Vinatieri NE 73.5 90

lm6 <- lm(FGt~FGtM1*Name,data=goals)

Question 8.8. What model do you think is being fitted here? Write it in
subscript form, where yij is the field goal average for the jth year of kicker
i, with i = 1, . . . , 19 and j = 1, 2, 3, 4. Let eij be the residual error, and
let xij be the previous year’s average. Check your answer against the
design matrix shown on the next slide.



X<-model.matrix(lm6) ; colnames(X)<-1:38 ; X[1:17,c(1:8,21:26)]

## 1 2 3 4 5 6 7 8 21 22 23 24 25 26

## 1 1 90.0 0 0 0 0 0 0 0.0 0.0 0.0 0 0 0

## 2 1 73.5 0 0 0 0 0 0 0.0 0.0 0.0 0 0 0

## 3 1 93.9 0 0 0 0 0 0 0.0 0.0 0.0 0 0 0

## 4 1 80.0 0 0 0 0 0 0 0.0 0.0 0.0 0 0 0

## 5 1 88.2 1 0 0 0 0 0 88.2 0.0 0.0 0 0 0

## 6 1 82.7 1 0 0 0 0 0 82.7 0.0 0.0 0 0 0

## 7 1 84.3 1 0 0 0 0 0 84.3 0.0 0.0 0 0 0

## 8 1 72.7 1 0 0 0 0 0 72.7 0.0 0.0 0 0 0

## 9 1 72.2 0 1 0 0 0 0 0.0 72.2 0.0 0 0 0

## 10 1 87.0 0 1 0 0 0 0 0.0 87.0 0.0 0 0 0

## 11 1 85.2 0 1 0 0 0 0 0.0 85.2 0.0 0 0 0

## 12 1 75.0 0 1 0 0 0 0 0.0 75.0 0.0 0 0 0

## 13 1 82.1 0 0 1 0 0 0 0.0 0.0 82.1 0 0 0

## 14 1 95.6 0 0 1 0 0 0 0.0 0.0 95.6 0 0 0

## 15 1 85.7 0 0 1 0 0 0 0.0 0.0 85.7 0 0 0

## 16 1 79.1 0 0 1 0 0 0 0.0 0.0 79.1 0 0 0

## 17 1 80.0 0 0 0 1 0 0 0.0 0.0 0.0 80 0 0



Question 8.9. Interpret the ANOVA table below.

anova(lm6)

## Analysis of Variance Table

##

## Response: FGt

## Df Sum Sq Mean Sq F value Pr(>F)

## FGtM1 1 87.20 87.199 1.9008 0.176047

## Name 18 2252.47 125.137 2.7279 0.004565 **

## FGtM1:Name 18 417.75 23.209 0.5059 0.938592

## Residuals 38 1743.20 45.874

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Collinear explanatory variables in a linear model

• Let X = [xij ]n×p be an n× p design matrix.

• If there is a nonzero vector α = (α1, . . . , αp) such that Xα = 0 then the
columns of X are collinear.

• Here, 0 is the zero vector, (0, 0, . . . , 0).

• We can write xj = (x1j , x2j , . . . , xnj) for the jth column of X. Then,

Xα = α1x1 + α2x2 + · · · + αjxj .

We see that Xα can be thought of as a linear combination of the
columns of X.

• Collinearity of explanatory variables has important consequences for
fitting a linear model to data.

• It can also be useful to notice whether the variables are close to
collinear, meaning that Xα is small but nonzero.



Example: an intercept with a coefficient for each factor

• Recall the mouse weight dataset. Consider a sample linear model,

yij = µ+ µj + eij .

• Suppose that we don’t set the µ1 = 0 so we try to estimate both µ1 and
µ2 at the same time as the intercept, µ.
• Let’s work with just 3 mice in each treatment group, so i = 1, 2, 3 and
j = 1, 2. The design matrix is therefore

X <- cbind(rep(1,6),rep(c(1,0),each=3),rep(c(0,1),each=3)) ; X

## [,1] [,2] [,3]

## [1,] 1 1 0

## [2,] 1 1 0

## [3,] 1 1 0

## [4,] 1 0 1

## [5,] 1 0 1

## [6,] 1 0 1

• For α = (1,−1,−1), we have Xα = 0



The least squares fit with collinear predictors

• Suppose that b is a least squares coefficient vector, so that the fitted
value vector ŷ = Xb minimizes

∑n
i=1

(
yi − ŷi

)2
.

• Suppose that X is collinear, with Xα = 0.

• Since
X(b + α) = Xb + Xα = Xb + 0 = Xb,

we see that b + α is also a least squares coefficient vector.

• When X is collinear, a least squares coefficent still exists, but it is
not unique.

Question 8.10. Let c be any number. Recall multiplication of a vector by
a scalar: cα = (cα1, . . . , cαp). Show that b + cα is also a least squares fit.



Standard errors for collinear variables

Question 8.11. Any variable that is part of a collinear combination of
variables has infinite standard error. Why?



What does R do if give it collinear variables?

mice <- read.table("femaleMiceWeights.csv",header=T,sep=",")

chow=rep(c(1,0),each=12)

hf=rep(c(0,1),each=12)

lm1 <- lm(Bodyweight~chow+hf,data=mice)

coef(summary(lm1))

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 26.834167 1.039353 25.818139 6.045435e-18

## chow -3.020833 1.469867 -2.055174 5.192480e-02

• R noticed that the three explanatory variables are collinear, and refused
to fit the third



model.matrix(lm1)

## (Intercept) chow hf

## 1 1 1 0

## 2 1 1 0

## 3 1 1 0

## 4 1 1 0

## 5 1 1 0

## 6 1 1 0

## 7 1 1 0

## 8 1 1 0

## 9 1 1 0

## 10 1 1 0

## 11 1 1 0

## 12 1 1 0

## 13 1 0 1

## 14 1 0 1

## 15 1 0 1

## 16 1 0 1

## 17 1 0 1

## 18 1 0 1

## 19 1 0 1

## 20 1 0 1

## 21 1 0 1

## 22 1 0 1

## 23 1 0 1

## 24 1 0 1

## attr(,"assign")

## [1] 0 1 2



Collinear variables and the determinant of XtX

• Recall that the variance of β̂ in the usual linear model is σ2
(
XtX

)−1
.

• Collinearity means the variance is infinite, a matrix version of dividing by
zero.

• Recall that a square matrix is invertible if its determinant is nonzero.
• We can check that collinearity means det

(
XtX

)
= 0.

X <- model.matrix(lm1)

t(X)%*%X

## (Intercept) chow hf

## (Intercept) 24 12 12

## chow 12 12 0

## hf 12 0 12

det(t(X)%*%X)

## [1] 0



Linearly independent vectors and matrix rank

• Columns of a matrix that are not collinear are said to be linearly
independent.

• The rank of X is the number of linearly independent columns.

• X has full rank if all the columns are linearly independent. In this case,
we expect the least squares coefficient to be uniquely defined and so XtX
has non-zero determinant and is invertible.

• If X does not have full rank, we can drop linearly dependent columns
until the remaining columns are linearly independent. This is a practical
approach to handling collinearity.



Example: reducing a design matrix to full rank

X <- model.matrix(lm1)

det(t(X)%*%X)

## [1] 0

X2 <- X[,1:2]

det(t(X2)%*%X2)

## [1] 144

• Dropping the third column of X has given us a full-rank design matrix.

Question 8.12. The least squares fitted values are the same using the
predictor matrix X2 as X. Why does dropping the last column not change
the fitted values?

X
X2
X


Almost collinear variables

• If the determinant of XtX is close to zero, the variance of the
model-generated least squares coefficient vector becomes large.

• This can happen when multiple explanatory variables are included in a
model which all model similar things.

Question 8.13. Recall our data analysis using unemployment to explain
life expectancy. What would happen if we added total employment as an
additional explanatory variable? (Being unemployed is not the only
alternative to being employed, since only adults currently looking for work
are counted as unemployed.)



Using linear models to fit polynomial relationships

• Recall the basic linear trend model from Chapter 1 for data y1, . . . , yn
with yi measured at time ti,

[M1] yi = b0 + b1ti + ei, i = 1, . . . , n

• What if the data have a trend that is not linear?

• The next thing we might consider is a quadratic trend model,

[M2] yi = b0 + b1ti + b2t
2
i + ei, i = 1, . . . , n

• M1 and M2 are both linear models, with respective design matrices

X[1] =


1 t1
1 t2
...

...
1 tn

 X[2] =


1 t1 t21
1 t2 t22
...

...
1 tn t2n





The order p polynomial smoothing model

• When the explanatory variable for yi is the time of measurement, ti,
then we call the linear model a trend.

• When we fit yi using a function of an arbitrary explanatory variable xi
we say we are smoothing.

• We can choose any p in the general order p polynomial smoothing model,

[M3] yi = b0 + b1xi + b2x
2
i + b3x

3
i + · · · + bpx

p
i + ei, i = 1, . . . , n

• This is a linear model with design matrix

X[3] =


1 x1 x21 . . . xp1
1 x2 x22 . . . xp2
...

...
...

...
1 xn x2n . . . xpn


Question 8.14. How would you decide what order p to use for the
polynomial smoothing?



Cubic polynomial smoothing of life expectancy

L_poly3 <- lm(Total~Year+I(Year^2)+I(Year^3),data=L)

plot(L$Year,L$Total,

type="line",

xlab="Year",

ylab="Life expectancy")

lines(L$Year,fitted(L_poly3),

lty="dashed")

Question 8.15. Why do we need to write I(Year^2) not just Year^2 to
fit a polynomial smoothing model in the R formula notation?

I(Year^2)
Year^2


Checking the cubic smoothing calculation

Question 8.16. How would you check that the R model formula we wrote
is correct for the cubic polynomial we intend to fit?

Question 8.17. If we have done a good job of modeling the trend, we
might hope that the residuals look like independent measurement errors.
How would you check if this is the case?



Repeating diagnostic tests for life expectancy vs
unemployment using cubic detrending

L_detrended <- L_poly3$residuals

U_annual <- apply(U[,2:13],1,mean)

U_detrended <- lm(U_annual~Year+I(Year^2)+I(Year^3),

data=U)$residuals

L_detrended <- subset(L_detrended,L$Year %in% U$Year)

lm_poly3 <- lm(L_detrended~U_detrended)

n <- length(resid(lm_poly3))

e <- resid(lm_poly3)[2:n] ; lag_e <- resid(lm_poly3)[1:(n-1)]

plot(U$Year,resid(lm_poly3)) plot(lag_e,e)



Local linear smoothing of life expectancy

L_loess <- loess(Total~Year,data=L,span=0.3)

plot(L$Year,L$Total,

type="line",

xlab="Year",

ylab="Life expectancy")

lines(L$Year,fitted(L_loess),

lty="dashed",col="red")

• loess() is a smoother that fits a local linear model. This means that,
at each point xj , the smoother predicts yi fitting a linear model that
ignores all the data except for points close to xi.

• Setting span=0.3 means that the closest 30% of the points are used.

loess()
span=0.3


Repeating diagnostic tests for life expectancy vs
unemployment using a smoother

L_detrended <- resid(L_loess)

U_annual <- apply(U[,2:13],1,mean)

U_detrended <- resid(loess(U_annual~Year,data=U,span=0.3))

L_detrended <- subset(L_detrended,L$Year %in% U$Year)

lm_loess <- lm(L_detrended~U_detrended)

n <- length(resid(lm_loess))

e <- resid(lm_loess)[2:n] ; lag_e <- resid(lm_loess)[1:(n-1)]

plot(U$Year,resid(lm_loess)) plot(lag_e,e)



Revisiting the evidence for pro-cyclical mortality

coef(summary(lm_loess))

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 0.007138079 0.01613621 0.4423641 0.6596720450

## U_detrended 0.067235405 0.01628394 4.1289394 0.0001045733

• Recall that linear detrending gave a signficant association between life
expectancy and unemployment.

• This suggested that mortality is pro-cyclical, meaning it increases when
the business cycles is in economic expansion and unemployment is low.

• In Chapter 7, we found the residuals in this regression had a strong
pattern, casting doubt on the validity of our linear model and its
unintuitive conclusion.

Question 8.18. Re-assess the evidence based on this new analysis.



The R-squared statistics to assess goodness of fit

• R2 is the square of the correlation between the data and the fitted
values.

• It can also be computed as

R2 = 1 − RSS

SST
=

SST − RSS

SST

where RSS is the residual sum of squares and SST is the total sum of
squares, defined as

SST =

n∑
i=1

(
yi − ȳ

)2
, where ȳ =

1

n

n∑
i=1

yi.

• R2 is sometimes described as the fraction of the variation in the data
explained by the linear model.

• 1 −R2 is the fraction of the variation in the data left unexplained by the
model.



Uses and abuses of R-squared

• Sheather (p. 30) describes R2 as “arguably one of the most commonly
misused statistics.”

• This raises questions: what are the proper uses? What are the lurking
dangers?

• A low R2 sends a clear signal: the model doesn’t explain the data much
better than the sample mean.

• Sometimes a small, but statistically significant, correlation is of interest.
If you are monitoring data on the operation of an aircraft jet engine, you
want to know about evidence suggesting a malfunction as soon as it is
statistically significant. Interpretation of R-squared depends on
context.

• The R2 statistic compares the residual sum of squares under the full
model with the residual sum of squares under a model with a constant
mean. By contrast, the F test compares the full model with a model that
omits specific selected explanatory variables. The F test is more
appropriate for assessing whether a variable, or group of variables, should
be included in the model.



A relationship between the F statistic and R-squared

• Recall that in a regression setting, the F statistic is expressed in the
following way.

f =
(RSS0 − RSSa)/d

RSSa/(n− q)
.

• q is the dimension of the alternative hypothesis.

• d is the difference in dimension between the null and alternative
hypotheses.

Question 8.19. Write the hypotheses H0 and Ha to match the R2

statistic in a linear model with p explanatory variables (including the
intercept). Set up these hypotheses so that RSS0 is SST, and RSSa is
RSS.

• In this context, we see that q = p and d = p− 1.



Writing R2 in terms of an F statistic

• From last slide, we have

f =
(SST − RSS)/(p− 1)

RSS/(n− p)

• Recall that R2 = 1 − RSS/SST.

Question 8.20. Check by algebra that R2 = 1 − 1

1 + f × (p− 1)/(n− p)

Question 8.21. What is R2 when F is very large? or close to zero?



Question 8.22. Explain why R2 cannot decrease when you add an extra
explanatory variable into a linear model. (Explanations for questions like
this should involve some math notation, not just words.)

• Simplicity in a model is a good thing. The fact that any added model
complexity makes R2 seem “better” requires caution in interpretation.



Adjusted R-squared

• One approach to penalize R2 for a more complex model is to divide each
sum of squares by its degrees of freedom. This gives the adjusted
R-squared,

R2
adj = 1 − RSS/(n− p)

SST/(n− 1)
.

• Dividing by the degrees of freedom in R2
adj is like what we do in the F

statistic.

• The F statistic takes advantage of the nice mathematical property that
SST − RSS and RSS are independent random variables for the
probability model with normally distributed measurement error.

• For comparing two nested models (when the larger model consists of
adding variables to the smaller model) an F test is a clearer statistical
argument than comparing R2

adj.

• When the models are not nested, the F test is not applicable. Comparing
R2

adj values gives one way to assess the models, though not a formal test.

• Now we’ve studied R2
adj, we understand everything in summary(lm()).

summary(lm())


##

## Call:

## lm(formula = GPA ~ ACT + High_School, data = gpa)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.10265 -0.29862 0.07311 0.40355 1.31336

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.292793 0.136725 9.455 < 2e-16 ***

## ACT 0.037210 0.005939 6.266 6.48e-10 ***

## High_School 0.010022 0.001279 7.835 1.74e-14 ***

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.5672 on 702 degrees of freedom

## Multiple R-squared: 0.2033,Adjusted R-squared: 0.2011

## F-statistic: 89.59 on 2 and 702 DF, p-value: < 2.2e-16



Model selection

• Suppose we have a large number ` of potential explanatory variables in
our dataset.

• The total number of possible linear models is 2` since each of the `
variables can be either in or out of the model.

• If we allow for the possiblity of interactions, things are even worse.

• For two variables xi1 and xi2 on each individual i = 1, 2, . . . , n, modeling
an interaction can be viewed as including a new variable xi3 = xi1xi2.

Question 8.23. If there are ` explanatory variables, considered as main
effects, and any pair of them could give rise to an interaction effect,
how many possible models are there? For simplicity, allow for the
possibility of including interactions without the main effects.



Practical considerations for model selection

• Sometimes, you build models based on specific hypotheses about the
system you are investigating.

• In this case, our tools for hypothesis testing work well. You work
through a process of starting with a basic model and considering a
relatively small sequence of alternative hypotheses to build up an
understanding of the data.

• A different scenario occurs when you explore a very large number of
different models.

• If you consider 1000 alternative models and each one is tested at
significance level 0.01 then you expect to find 10 models that would
formally let you reject the null hypothesis at a “high” level of significance
for random variables generated under the null model.

• Similar issues arise if you consider many variables in a single linear model
and look to identify significant ones.



The expected number of false discoveries

Question 8.24. Suppose that you consider ` = 100 variables by placing
them all in a linear model and reporting the variables whose t statistic is
significant at the 0.05 level. How many “significant” variables would you
expect to report under a null probability model where all the coefficients
are zero?



Confidence intervals after model selection

Question 8.25. Suppose you have ` = 100 explanatory variables and you
consider ` = 100 different models, each with only one of the explanatory
variables in the model. You pick as your favorite model the one with the
highest R2 statistic, which is equivalent to picking the one with the
smalles p-value for its t statistic. You report a 95% confidence interval for
the coefficient in this linear model. What is the chance that this
confidence interval will cover the truth, under the null probability model
where all the coefficients for all the explanatory variables are zero?



Dealing with multiple testing

• The difficulty of properly evaluating statistical significance when
investigating very many hypotheses is called the multiple testing
situation.

• Dealing with multiple testing is a current scientific concern. It is related
to the so-called crisis in scientific reproducibility.

• Advances in data acquisition and computation increasingly lead to large
datasets to be investigated.

• One principle: report all the tests you make, not just the nominally
significant ones. This lets the reader assess the hazard of multiple testing
bias.

• Another principle: any result not yet confirmed by an independent
experiment is suspicious.



The causal interpretation of observational studies

• Consider a simple least-squares linear model yi = axi + b+ ei for
i = 1, . . . , n. The usual corresponding probability model is
Yi = αxi + β + εi with ε1, . . . , εn being independent N [0, σ] random
variables.

• The coefficient α for xi, i = 1, . . . , n is commonly called the effect of xi
on yi.

• Sometimes a is called the effect, but it is more properly an estimated
effect.

• The causal interpretation of the linear model is that, if we manipulated
xi to increase it by one unit for individual i, keeping everything else fixed,
we would expect yi to increase by a units.

• The use of the word “effect” has a causal meaning in common usage.

• We should think carefully about when this meaning is justified.



Does coffee cause heart attacks?

• Coffee has relatively high levels of caffeine, a commonly consumed drug.
Many studies have been done to see if it has adverse (or positive) health
effects.

• A typical observational study will model a health outcome (say, a
measure of heart health) and investigate linear models based on available
explanatory variables.

• If higher levels of coffee consumption are associated with lower heart
health scores, beyond what can be explained by chance variation in our
sample, we will be suspicious about drinking coffee.

Question 8.26. Suggest important confounding variable(s) in the causal
interpretation of this model. What would you do to help make a
convincing argument for or against coffee?



Which surgeon do you choose?

• Cost effectiveness of medical treatment is a major current issue. You are
advising a health insurance program, and your boss gives you data on
success rates for a certain heart surgery, together with the salary of the
surgeon performing the operation.

Question 8.27. Suppose you find the estimated effect is negative and
statistically significant: higher salaries are associated with lower success
rates. How would you interpret this result? What are possible confounding
factors?



When can we infer causation from observational data?

The following considerations may add weight to the causal interpretation
of an association

• There is a plausible mechanism.

• There are no un-measured variables considered plausible mechanisms.

• The effect is consistent across population subgroups.

• For data collected though time, the proposed cause precedes the
consequence.

• Consistency with available experimental evidence.

• A consistent gradient between increases in the proposed cause and its
consequence.

The ideas were developed in the 1950s while tracking down the case
against cigarettes (Wikipedia: Bradford Hill criteria) and continue to be
debated.



How did the observations get into the study?

• There is risk of selection bias if the individuals are not selected
randomly from the population they are supposed to represent.

• Selection bias is a type of confounding. The confounder is a variable
that explains the selection process.

Question 8.28. In World War II, the US Airforce was suffering heavy
losses in bombing raids over Germany. To decide where to add extra
armor, engineers studied bullet holes on returning planes to see which
parts were exposed to most gunfire. A prominent statistician, Abraham
Wald, provided a different interpretation. What was it?



Revisiting the fieldgoal kicker data

• Any observations study can and should be examined for confounding and
selection bias issues.

Question 8.29. Consider the field goal percentage data. Recall that we
analyzed the 19 NFL kickers who made at least ten field goal attempts in
each of 2002, 2003, 2004, 2005 and 2006 seasons. We found a slope of
-0.504 when predicting field goal percentage in year t using field goal
percentage in year t-1, with a separate intercept for each kicker. Comment
on the possible roles of selection bias and/or confounding for interpreting
this result.



Randomized experiments and random samples

• The huge difficulties interpreting observational studies motivate avoiding
them whenever possible

• Random assignment to treatment in a controlled experiment removes
the possibility of confounding, and ensures that any statistically significan
effect can legitimately be given a causal interpretation.

• A randomized experiment occurs when individual i is randomly
assigned a treatment. A treatment is a set of explanatory variables
corresponding to a row of X.

• In a randomized experiment the independence assumption on the errors
is reasonable: we can view the errors as coming from differences between
individuals drawn independently from a large population.

• STATS 470 investigates design and analysis of experiments, which is an
extension of linear statistical modeling.

• Random sampling removes selection bias, apart from missing data.

• STATS 480 investigates sample survey analysis, which also builds on
linear statistial modeling.


