Stats 401 Lab 2

401 GSI team

1/9/2018

GSI Office hour

At 2165 USB, the Science Learning Center Annex

- Yuan Sun. Mon 9-11 am
- Sanjana Gupta. Tue 9-11 am
- Naomi Giertych. Thu 9-11 am

Homework

- Out of 10 points
- 1 point for the statement of sources
- 1 point for feedback
- Provide the code if the question request

Swirl tutorial

We have finished lesson $1 / 3 / 4$ in HW1.

- Any techical difficulties encountered working with swirl?
- Any questions about materials introduced in the tutorial?

Swirl tutorial

You are asked to complete lesson 5/6/7/9 for HW2 and lesson 9 can be a little bit harder.

- We can go through parts of it together at the end of this lab (if we have time).
- You can always go to our office hour for help.

Basic matrix computation

- Addition
- Scalar multiplication
- Transpose
- Matrix multiplication
- Inverse
- Solving linear equations

Addition

Let $\mathbb{A}=\left[a_{i j}\right]_{n \times p}$ and $\mathbb{B}=\left[b_{i j}\right]_{n \times p}$, then $\mathbb{A}+\mathbb{B}=\left[a_{i j}+b_{i j}\right]_{n \times p}$ For example,

$$
\mathbb{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

and

$$
\mathbb{B}=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]
$$

Then

$$
\mathbb{A}+\mathbb{B}=\left[\begin{array}{ll}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22}
\end{array}\right]
$$

Addition

\# generate matrix A and B
$\mathrm{A}=$ matrix $(\mathrm{c}(3,-2,-1,4,1,2)$, nrow=2); A
\#\# [,1] [,2] [,3]
\#\# [1,] $3 \quad-1 \quad 1$
\#\# [2,] $-2 \quad 4 \quad 2$
B = matrix(1:6,nrow=2);B

\#\#	$[, 1]$	$[, 2]$	$[, 3]$
\#\# [1,]	1	3	5
\#\# [2,]	2	4	6
A + B			

\#\#	$[, 1]$	$[, 2]$	$[, 3]$
\#\# [1,]	4	2	6
\#\# [2,]	0	8	8

Scalar multiplication

Let $\mathbb{A}=\left[a_{i j}\right]_{n \times p}$, s be a scalar, then $s \mathbb{A}=\left[s a_{i j}\right]_{n \times p}$.
For example,

$$
\mathbb{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

Then

$$
s \mathbb{A}=\left[\begin{array}{ll}
s a_{11} & s a_{12} \\
s a_{21} & s a_{22}
\end{array}\right]
$$

Scalar multiplication

```
# Use same matrix A
A
\begin{tabular}{lrrr} 
\#\# & {\([, 1]\)} & {\([, 2]\)} & {\([, 3]\)} \\
\#\# [1,] & 3 & -1 & 1 \\
\#\# [2,] & -2 & 4 & 2
\end{tabular}
# 5 time A
5 * A
```

\#\#	[, 1]	$[, 2]$	$[, 3]$
\#\# [1,]	15	-5	5
\#\# [2,]	-10	20	10

Transpose

Let $\mathbb{A}=\left[a_{i j}\right]_{n \times p}$, then $\mathbb{A}^{\top}=\left[a_{j i}\right]_{p \times n}$
For example,

$$
\mathbb{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

Then

$$
\mathbb{A}^{\top}=\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right]
$$

Transpose

\# Recall we have matrix A
A
$\begin{array}{lrrr}\text { \#\# } & {[, 1]} & {[, 2]} & {[, 3]} \\ \text { \#\# [1,] } & 3 & -1 & 1 \\ \text { \#\# [2,] } & -2 & 4 & 2\end{array}$
\# A transpose
C $=\mathrm{t}(\mathrm{A}) ; \mathrm{C}$

\#\#	$[, 1]$	$[, 2]$
\#\# [1,]	3	-2
\#\# [2,]	-1	4
\#\# [3,]	1	2

Matrix multiplication

Let $\mathbb{A}=\left[a_{i j}\right]_{n \times p}$ and $\mathbb{B}=\left[b_{i j}\right]_{p \times q}$, then $\mathbb{A} \mathbb{B}=\left[c_{i j}\right]_{n \times q}$ where $c_{i j}=\sum_{k=1}^{p} a_{i k} b_{k j}$
For example,

$$
\mathbb{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

and

$$
\mathbb{B}=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]
$$

Then

$$
\mathbb{A} \mathbb{B}=\left[\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}
\end{array}\right]
$$

Matrix multiplication

```
# Recall we have matrix B and C
B
## [,1] [,2] [,3]
## [1,] 
C
## [,1] [,2]
## [1,] 3 -2
## [2,] -1 4
## [3,] 1 2
# Let's caculate BC by hand
```


Matrix multiplication

```
# Check with R
B %*% C
```

\#\#	$[, 1]$	$[, 2]$
\#\# [1,]	5	20
\#\# [2,]	8	24

\# notice that matrix multiplication is not commutative C \% *\% B

\#\#	$[, 1]$	$[, 2]$	$[, 3]$
\#\# [1,]	-1	1	3
\#\# [2,]	7	13	19
\#\# [3,]	5	11	17

Inverse

$$
\mathbb{A}=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

Then

$$
\mathbb{A}^{-1}=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
$$

$\operatorname{det}(\mathbb{A})=a_{11} a_{22}-a_{12} a_{21}$ is called the determinant of \mathbb{A}. Need $\operatorname{det}(\mathbb{A}) \neq 0$ for \mathbb{A} to be invertible.
We only need to caculate the inverse a 2 by 2 matrix by hand

Inverse

```
# We can inverse higher dimensional matrix using R
# Produce a 3 by 3 matrix
set.seed(2018)
D = matrix(rnorm(9), nrow=3);D
```

\#\#	$[, 1]$	$[, 2]$	$[, 3]$
\#\# [1,]	-0.42298398	0.2708814	2.0994707
\#\# [2,] -1.54987816	1.7352837	0.8633512	
\#\# [3,] -0.06442932	-0.2647112	-0.6105871	

\# Inverse of D
solve(D)

\#\#	$[, 1]$	$[, 2]$	$[, 3]$
\#\# $[1]$,	-0.7065356	-0.3318892	-2.8986651
\#\# [2,]	-0.8518872	0.3345923	-2.4560648
\#\# $[3]$,	0.4438772	-0.1100366	-0.2671086

Solving linear equation

Suppose we want to solve $\mathbb{A} \mathbf{x}=\mathbf{b}$, then $\mathbf{x}=\mathbb{A}^{-1} \mathbf{b}$. (Assuming \mathbb{A} is invertible)
As a example question, we want to solving the following linear equations in R

$$
\left.\begin{array}{rl}
x+y & =2 \\
x+2 y+z & =1 \\
3 x & =2 z
\end{array}\right)=-3
$$

```
# This is the A we what
A = matrix(c(1,1,3,1,2,0,0,1,2),nrow=3);A
```

$\left.\begin{array}{lrrr}\text { \#\# } & {[, 1]} & {[, 2]} & {[, 3]} \\ \text { \#\# } & {[1,]} & 1 & 1\end{array}\right) 0$

Solving linear equations

```
# This is the b we what
b = c(2,1,-3)
# solve for x
x = solve(A) %*% b;x
```

\#\# [,1]
\#\# [1,] 0.6
\#\# [2,] 1.4
\#\# [3,] -2.4

In lab activity

```
# We generate the data similar as the homework
randomMatrix <- function(p,q,values=-4:4){
    matrix(sample(values,size=p*q,replace=TRUE),p,q)
}
set.seed(2018)
A <- randomMatrix(2,2)
B <- randomMatrix (2,2)
```

1. Caculate the following by hand and check your results with R

- $\mathbb{A}+\mathbb{B}$
- $\mathbb{A B}$
- \mathbb{A}^{-1}

2. Solve the following linear equations with R

$$
\begin{aligned}
&-x+y+z=1.5 \\
& x+2 y-z=-2 \\
& 3 x
\end{aligned}
$$

Lab ticket

1. Suppose \mathbb{A} is a 4×6 matrix and \mathbb{B} is a 3×6 matrix. What is the dimension of $\mathbb{A} \mathbb{B}^{\top}$?
2. Let

$$
\mathbb{A}=\left[\begin{array}{ccc}
1 & 3 & -2 \\
1 & -1 & 2
\end{array}\right]
$$

and

$$
\mathbb{B}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1 \\
2 & 1
\end{array}\right]
$$

Caculate $2 \mathbb{A} \mathbb{B}$ by hand.

