Stats 401 Lab 3

401 GSI team

1/18/2018 and 1/19/2018

Announcements

- Homework 2 is due today
- Please remember to include "Sources" and "Please explain"
- First quiz is coming up! (Feb. 1st or 2nd)
- ► Homework 1 and 2 solutions will be posted Friday afternoon.

Quick Review: Matrix Properties

Addition

$$\mathbb{A} + \mathbb{B} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{bmatrix}$$

Scalar multiplication

$$s\mathbb{A} = \begin{bmatrix} sa_{11} & sa_{12} \\ sa_{21} & sa_{22} \end{bmatrix}$$

$$\mathbb{A}^{\top} = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{bmatrix}$$

Matrix multiplication

$$\mathbb{AB} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$$

Quick Review: Matrix Properties (cont.)

Inverse

$$\mathbb{A}^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

Quick Review: How to Input Matrices into R

Take the following matrix:

$$\mathbb{A} = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 2 & 1 \\ 3 & 0 & 2 \end{bmatrix}$$

Quick Review: How to Input Matrices into R

Don't forget to check that your output is correct!

matrix_by_col

##		[,1]	[,2]	[,3]
##	[1,]	1	1	3
##	[2,]	1	2	1
##	[3,]	3	0	2

matrix_by_row

##		[,1]	[,2]	[,3]
##	[1,]	1	1	3
##	[2,]	1	2	1
##	[3,]	3	0	2

Matrices in Action

- Solving a system of linear equations
- Recall the US wages dataset that we saw in Lab 01

##		wage	educ	exper	race	smsa	ne	mw	SO	we	pt
##	6085	771.60	18	18	0	1	1	0	0	0	0
##	23701	617.28	15	20	0	1	0	0	0	1	0
##	16208	957.83	16	9	0	1	0	0	1	0	0
##	2720	617.28	12	24	0	1	1	0	0	0	0
##	9723	902.18	14	12	0	1	0	1	0	0	0
##	22239	299.15	12	33	0	1	0	0	0	1	0

Matrices in Action (cont.)

Write the sample version of the linear model for wages with all other variables as explanatory variables using vector notation.

Step 1) Notation:

Let $x_{i1}, x_{i2}, \ldots, x_{ip}$ and y_i be the values of predictor variable j and the wage of worker i, respectively.

Step 2) Recognize the hidden matrix:

Linear model for each individual is

$$y_{1} = b_{0} + b_{1}x_{11} + b_{2}x_{12} + \dots + b_{p}x_{1p} + e_{1}$$
$$y_{2} = b_{0} + b_{1}x_{21} + b_{2}x_{22} + \dots + b_{p}x_{2p} + e_{2}$$
$$\vdots$$
$$y_{n} = b_{0} + b_{1}x_{n1} + b_{2}x_{n2} + \dots + b_{p}x_{np} + e_{n}$$

This looks like a system of linear equations that we can put into matrix form! Matrices in Action (cont.)

Let

Step 3) Define the matrices and vectors:

$$\mathbb{X} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ \vdots & \vdots \\ x_{n1} & x_{n2} \end{bmatrix}$$

Let $\mathbf{y} = (y_1, y_2, ..., y_n)$, $\mathbf{b} = (b_1, b_2)$, and $\mathbf{e} = (e_1, e_2, ..., e_n)$ be the vector of wages, predictor variables, and error terms. Then

$$\mathbf{y} = \mathbb{X}\mathbf{b} + \mathbf{e}$$

Solving for the least squares estimate

 Recall the least squares estimate for the predictor variable coefficients is

$$\mathbf{b} = (\mathbb{X}^{\mathbb{T}}\mathbb{X})^{-1}\mathbb{X}\mathbf{y}$$

• Let's solve for **b** together.

Solving for **b**

 Construct X matrix corresponding to the linear equation from before.

head(X, n=3)

##		intercept	educ	exper	race	smsa	ne	mw	so	pt	
##	[1,]	1	18	18	0	1	1	0	0	0	
##	[2,]	1	15	20	0	1	0	0	0	0	
##	[3,]	1	16	9	0	1	0	0	1	0	

Solving for \boldsymbol{b}

solve(t(X) %*% X) %*% t(X) %*% uswages\$wage

##		[,1]
##	intercept	-203.918425
##	educ	48.803359
##	exper	9.135332
##	race	-119.158469
##	smsa	115.678257
##	ne	-53.926540
##	mw	-60.199034
##	SO	-50.433257
##	pt	-336.215572

Checking our result b

```
# Use the linear model function in R for
# including all the variables
wage_lm <- lm(wage ~ ., data = uswages)
coef(wage_lm)
```

##	(Intercept)	educ	exper	race
##	-203.918425	48.803359	9.135332	-119.158469
##	smsa	ne	mw	so
##	115.678257	-53.926540	-60.199034	-50.433257
##	we	pt		
##	NA	-336.215572		

In Lab Activity

- Using the library(faraway) and data("infmort"):
- 1. Construct the linear equation using vector and matrix notation.
- Estimate the least squares estimate of b using the design matrix X.
- 3. Check your estimate by using the Im function in R.

Lab ticket

 Write your least squares estimate of the fitted values for the infant mortality data.