Stats 401 Lab 3

401 GSI team

$1 / 18 / 2018$ and $1 / 19 / 2018$

Announcements

- Homework 2 is due today
- Please remember to include "Sources" and "Please explain"
- First quiz is coming up! (Feb. 1st or 2nd)
- Homework 1 and 2 solutions will be posted Friday afternoon.

Quick Review: Matrix Properties

- Addition

$$
\mathbb{A}+\mathbb{B}=\left[\begin{array}{ll}
a_{11}+b_{11} & a_{12}+b_{12} \\
a_{21}+b_{21} & a_{22}+b_{22}
\end{array}\right]
$$

- Scalar multiplication

$$
s \mathbb{A}=\left[\begin{array}{ll}
s a_{11} & s a_{12} \\
s a_{21} & s a_{22}
\end{array}\right]
$$

- Transpose

$$
\mathbb{A}^{\top}=\left[\begin{array}{ll}
a_{11} & a_{21} \\
a_{12} & a_{22}
\end{array}\right]
$$

- Matrix multiplication

$$
\mathbb{A} \mathbb{B}=\left[\begin{array}{ll}
a_{11} b_{11}+a_{12} b_{21} & a_{11} b_{12}+a_{12} b_{22} \\
a_{21} b_{11}+a_{22} b_{21} & a_{21} b_{12}+a_{22} b_{22}
\end{array}\right]
$$

Quick Review: Matrix Properties (cont.)

- Inverse

$$
\mathbb{A}^{-1}=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
$$

Quick Review: How to Input Matrices into R

- Take the following matrix:

$$
\mathbb{A}=\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 2 & 1 \\
3 & 0 & 2
\end{array}\right]
$$

```
# R takes a column vector and
# splits it into 3 different rows
matrix_by_col <- matrix(c(1,1,3,1,2,0,3,1,2),nrow=3)
matrix_by_row <- matrix(c(1,1,3,1,2,1,3,0,2),
    byrow = TRUE, nrow=3)
```


Quick Review: How to Input Matrices into R

- Don't forget to check that your output is correct!
matrix_by_col

\#\#	$[, 1]$	$[, 2]$	$[, 3]$
\#\# [1,]	1	1	3
\#\# [2,]	1	2	1
\#\# [3,]	3	0	2

matrix_by_row

\#\#	$[, 1]$	$[, 2]$	$[, 3]$
\#\# [1,]	1	1	3
\#\# [2,]	1	2	1
\#\# [3,]	3	0	2

Matrices in Action

- Solving a system of linear equations
- Recall the US wages dataset that we saw in Lab 01

\#\#	wage educ exper race smsa ne mw so we pt										
\#\#	6085	771.60	18	18	0	1	1	0	0	0	
\#\#	23701	617.28	15	20	0	1	0	0	0	1	0
\#\#	16208	957.83	16	9	0	1	0	0	1	0	0
\#\#	2720	617.28	12	24	0	1	1	0	0	0	0
\#\#	9723	902.18	14	12	0		0	1	0	0	0
\#\#	22239	299.15	12	33	0	1	0	0	0	1	

Matrices in Action (cont.)

- Write the sample version of the linear model for wages with all other variables as explanatory variables using vector notation.

Step 1) Notation:
Let $x_{i 1}, x_{i 2}, \ldots, x_{i p}$ and y_{i} be the values of predictor variable j and the wage of worker i, respectively.
Step 2) Recognize the hidden matrix:
Linear model for each individual is

$$
\begin{gathered}
y_{1}=b_{0}+b_{1} x_{11}+b_{2} x_{12}+\cdots+b_{p} x_{1 p}+e_{1} \\
y_{2}=b_{0}+b_{1} x_{21}+b_{2} x_{22}+\cdots+b_{p} x_{2 p}+e_{2} \\
\vdots \\
y_{n}=b_{0}+b_{1} x_{n 1}+b_{2} x_{n 2}+\cdots+b_{p} x_{n p}+e_{n}
\end{gathered}
$$

- This looks like a system of linear equations that we can put into matrix form!

Matrices in Action (cont.)

Step 3) Define the matrices and vectors:
Let

$$
\mathbb{X}=\left[\begin{array}{cc}
x_{11} & x_{12} \\
x_{21} & x_{22} \\
\vdots & \vdots \\
x_{n 1} & x_{n 2}
\end{array}\right]
$$

Let $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right), \mathbf{b}=\left(b_{1}, b_{2}\right)$, and $\mathbf{e}=\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ be the vector of wages, predictor variables, and error terms. Then

$$
\mathbf{y}=\mathbb{X} \mathbf{b}+\mathbf{e}
$$

Solving for the least squares estimate

- Recall the least squares estimate for the predictor variable coefficients is

$$
\mathbf{b}=\left(\mathbb{X}^{\mathbb{T}} \mathbb{X}\right)^{-1} \mathbb{X} \mathbf{y}
$$

- Let's solve for \mathbf{b} together.

Solving for \mathbf{b}

- Construct \mathbb{X} matrix corresponding to the linear equation from before.

```
# Note that I've left out one of the
# regional dummy varibles
# Question for students: Why did I need to do this?
attach(uswages)
X <- cbind(intercept=rep(1, length(educ)),
    educ, exper, race,
    smsa, ne, mw,
    so, pt)
head(X, n=3)
\begin{tabular}{lrrrrrrrrr} 
\#\# & intercept & educ & exper & race & smsa \\
\#\# \([1]\), & 1 & 18 & 18 & 0 & 1 & 1 & 0 & 0 & 0 \\
\#\# [2,] & 1 & 15 & 20 & 0 & 1 & 0 & 0 & 0 & 0 \\
\#\# [3,] & 1 & 16 & 9 & 0 & 1 & 0 & 0 & 1 & 0
\end{tabular}
```


Solving for \mathbf{b}

solve(t(X) \%*\% X) \%*\% t(X) \%*\% uswages\$wage

\#\#	[,1]
\#\# intercept	-203.918425
\#\# educ	48.803359
\#\# exper	9.135332
\#\# race	-119.158469
\#\# smsa	115.678257
\#\# ne	-53.926540
\#\# mw	-60.199034
\#\# so	-50.433257
\#\# pt	-336.215572

Checking our result b

```
# Use the linear model function in R for
# including all the variables
wage_lm <- lm(wage ~ ., data = uswages)
coef(wage_lm)
```

\#\# (Intercept)	educ	exper	race	
\#\#	-203.918425	48.803359	9.135332	-119.158469
\#\#	smsa	ne	mw	so
\#\#	115.678257	-53.926540	-60.199034	-50.433257
\#\#	we	pt		
\#\#	NA	-336.215572		

In Lab Activity

- Using the library(faraway) and data("infmort"):

1. Construct the linear equation using vector and matrix notation.
2. Estimate the least squares estimate of \mathbf{b} using the design matrix \mathbb{X}.
3. Check your estimate by using the Im function in R.

Lab ticket

- Write your least squares estimate of the fitted values for the infant mortality data.

