Stats 401 Lab 4

401 GSI team

Outline

- Homework feedback
- Review on summation sign
- Sample quiz

Homework feedback - mad_libs in swirl

```
mad_libs <- function(...){
    # unpacking argument
    args <- list(...)
    # assign them to variables
    place <- args[["place"]]
    adjective <- args[["adjective"]]
    noun <- args[["noun"]]
    paste("News from", place, "today where", adjective,
    "students took to the streets in protest of the ner
    noun, "being installed on campus.")
}
```


Homework feedback - NA and 0

NA stands for not available, which means the value is missing. NA is not equal to 0 . (Suppose $x=0$, then the value of 0 is known, hence not missing).
$X=\operatorname{cbind}(c(N A, 0), c(1,2)) ; X$

\#\#	[,1]	[,2]
\#\# [1,]	NA	1
\#\# [2,]	0	2

\#\#	$[, 1]$	$[, 2]$
\#\# [1,]	1	3
\#\# [2,]	2	4

Homework feedback - NA and 0

```
\# NA plus/time other value will give us NA
\(\mathrm{X}+\mathrm{Y}\)
```

\#\#	[,1]	$[, 2]$
\#\# [1,]	NA	4
\#\# [2,]	2	6
X $\% * * \%$ Y		

\#\#	$[, 1]$	$[, 2]$
\#\# [1,]	NA	NA
\#\# [2,]	4	8

\# can use is.na() to check for NA
is.na(X)
\#\# [,1] [,2]
\#\# [1,] TRUE FALSE
\#\# [2,] FALSE FALSE

Homework feedback

Any other questions about the homework?

Review - summation sign

$\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+\ldots+x_{n}$. You can always do this expansion if you are uncertain what to do.
Useful results to remember:

- $\sum_{i=1}^{n} c x_{i}=c \sum_{i=1}^{n} x_{i}$
- $\sum_{i=1}^{n} c=n c$
- $\frac{d}{d c} \sum_{i=1}^{n} f\left(x_{i}, c\right)=\sum_{i=1}^{n} \frac{d}{d c} f\left(x_{i}, c\right)$

Review - summation sign

Example: Calculate $\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ where $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$.

Review - summation sign

Example: Calculate $\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$ where $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$. Solution:

$$
\begin{align*}
\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} & =\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}^{2}-2 x_{i} \bar{x}+\bar{x}^{2}\right) \\
& \left.=\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-\frac{2}{n} \bar{x} \sum_{i=1}^{n} x_{i}+\frac{1}{n} \sum_{i=1}^{n} \bar{x}^{2}\right) \tag{1}\\
& =\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-2(\bar{x})^{2}+(\bar{x})^{2} \\
& =\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}-(\bar{x})^{2}
\end{align*}
$$

Review - summation sign

Example : Suppose $\mathbf{c}=\left(c_{1}, \ldots, c_{p}\right)$ and $\mathbf{v}=\left(v_{1}, \ldots, v_{p}\right)$, Use Σ notation to evaluate the matrix product $\mathbf{c}^{\top} \mathbf{v}$

Review - summation sign

Example : Suppose $\mathbf{c}=\left(c_{1}, \ldots, c_{p}\right)$ and $\mathbf{v}=\left(v_{1}, \ldots, v_{p}\right)$, Use Σ notation to evaluate the matrix product $\mathbf{c}^{\top} \mathbf{v}$
Solution: $\mathbf{c}^{\top} \mathbf{v}=\sum_{i=1}^{p} c_{i} v_{i}$

Quiz outline

- Test the skills covered in HW 1 to 4
- 50 minutes; start at the beginning of next lab
- Closed book
- In today's lab we will do a sample quiz, which will be similar to the real quiz next week

Sample quiz - Matrix exercises

Suppose we define \mathbb{A} and \mathbb{B} as follows,
A

\#\#	$[, 1]$	$[, 2]$
\#\# [1,]	0	3
\#\# [2,]	1	2
\#\# [3,]	-2	-2

B

\#\#	$[, 1]$	$[, 2]$
\#\# [1,]	1	0
\#\# [2,]	-2	1

Calculate the matrices returned by following r command:

1. $\mathrm{A} \% * \% \mathrm{~B}$
2. $\mathrm{t}(\mathrm{A})$
3. solve(B)

Sample quiz - Summation exercises

1. Calculate $\sum_{i=k}^{k+5}(i+3)$
2. Calculate $\frac{d}{d m} \sum_{i=1}^{n}\left(y_{i}-m x_{i}\right)^{2}$

Sample quiz - R exercises

Which of the following code successfully construct the matrix
$\mathbb{A}=\left[\begin{array}{ll}1 & 1 \\ 2 & 2 \\ 3 & 3\end{array}\right]$
A. A $<-$ matrix $(c(1,1,2,2,3,3)$, nrow $=3)$
B. A $<-\operatorname{cbind}(c(1,1), c(2,2), c(3,3))$
C. $\mathbf{A}<-\mathbf{t}($ matrix $(c(1,1,2,2,3,3)$, nrow $=2))$
D. $A<-c(c(1: 3), c(1: 3))$

Sample quiz - Fitting a linear model by least squares

We look at the uswage data. Recall that
\#\# Warning: package 'faraway' was built under R version 3.3
head(uswages, $n=4$)

We want to fit a linear model using wage as response, educ and exper as predictors.

Sample quiz - Fitting a linear model by least squares

Which of the following code succesfully construct the matrix \mathbb{X}.
A. $X<-$ matrix(uswages\$educ, uswages\$exper)
B. $X<-$ matrix(rep(1,nrow(uswages)), uswages\$educ, uswages\$exper)
C. $\mathrm{X}<-\operatorname{cbind}($ rep(1, nrow(uswages)), uswages\$educ, uswages\$exper)
D. $X<-$ cbind(uswages\$educ, uswages\$exper)

Sample quiz - Fitting a linear model by least squares

If we want to fit the model using R function $\operatorname{Im}()$, which of the following call is correct?
A. Im (wage \sim., data $=$ uswages)
B. $\operatorname{Im}(y \sim x$, data $=$ uswages $)$
C. Im (wage $=$ educ + exper, data $=$ uswages $)$
D. Im (wage educ + exper, data $=$ uswages)

Explain briefly how you would check whether your proposed solution in is correct in R.

