Sample quiz

A. Matrix exercises

Suppose we define \mathbb{A} and \mathbb{B} as follows,

А

[,1] [,2] ## ## [1,] 0 3 ## [2,] 1 2 ## [3,] -2 -2 В ## [,1] [,2] ## [1,] 1 0

-2

1

Calculate the matrices returned by following r command:

1. A %*% B

2. t(A)

[2,]

3. solve(B)

B. Summation exercises

- 1. Calculate $\sum_{i=k}^{k+5} (i+3)$
- 2. Calculate $\frac{d}{dm}\sum_{i=1}^{n}(y_i mx_i)^2$ (Note: This kind of differentiation question will not be tested in the quiz, though we think it is a good practise for lab)

C. R exercises

Which of the following code successfully construct the matrix $\mathbb{A} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 3 \end{bmatrix}$

A. A <- matrix(c(1,1,2,2,3,3),nrow=3)

B. A <- cbind(c(1,1),c(2,2),c(3,3))</p>
C. A <- t(matrix(c(1,1,2,2,3,3) ,nrow=2))</p>

D. A <- c(c(1:3), c(1:3))

D. Fitting a linear model by least squares

We look at the uswage data. Recall that

Warning: package 'faraway' was built under R version 3.3.3

head(uswages, n=4)

##	wage	educ	exper	race	smsa	ne	mw	so	we	pt	
## 6085	771.60	18	18	0	1	1	0	0	0	0	
## 23701	617.28	15	20	0	1	0	0	0	1	0	
## 16208	957.83	16	9	0	1	0	0	1	0	0	
## 2720	617.28	12	24	0	1	1	0	0	0	0	

We want to fit a linear model using wage as response, educ and exper as predictors.

- 1. Which of the following code successfully construct the matrix X.
- A. X <- matrix(uswages\$educ, uswages\$exper)
- B. X <- matrix(rep(1,nrow(uswages)), uswages\$educ, uswages\$exper)
- C. X <- cbind(rep(1,nrow(uswages)), uswages\$educ, uswages\$exper)
- D. X <- cbind(uswages\$educ, uswages\$exper)

2. If we want to fit the model using R function lm(), which of the following call is correct?

A. $lm(wage \sim ., data = uswages)$

- B. $lm(y \sim x, data = uswages)$
- C. lm(wage = educ + exper, data = uswages)
- D. $lm(wage \sim educ + exper, data = uswages)$

3. Explain briefly how you would check whether your proposed solution in (D.2) is correct in R.