
Quiz 2, STATS 401 W18
In lab on 3/29 or 3/30

This document produces different random quizzes each time the source code generating it is
run. The actual quiz will be a realization generated by this random process, or something
similar.

Instructions. You have a time allowance of 50 minutes, though the quiz may take you much
less time and you can leave lab once you are done. The quiz is closed book, and you are not
allowed access to any notes. Any electronic devices in your possession must be turned off and
remain in a bag on the floor.

Formulas

The following formulas will be provided. To use these formulas properly, you need to make appropriate
definitions of the necessary quantities.

(1) b =
(
XTX

)−1 XTy

(2) Var(β̂) = σ2(XTX
)−1

(3) Var(AY) = AVar(Y)A>

(4) Var(X) = E
[
(X − E[X])2] = E[X2]−

(
E[X]

)2

(5) Cov(X,Y ) = E
[(
X − E[X]

)(
Y − E[Y ]

)]
= E[XY ]− E[X] E[Y ]

(6) The binomial (n, p) distribution has mean np and variance np(1− p).

From ?pnorm:

pnorm(q, mean = 0, sd = 1)
qnorm(p, mean = 0, sd = 1)
q: vector of quantiles.
p: vector of probabilities.

Q1. Calculating means and variances, and making a normal approximation

Q1-1. Recall the following analysis where the director of admissions at a large state university wants to assess
how well academic success can be predicted based on information available at admission. She fits a linear
model to predict freshman GPA using ACT exam scores and percentile ranking of each student within their
high school, as follows.

gpa <- read.table("gpa.txt",header=T)
gpa_lm <- lm(GPA~ACT+High_School,data=gpa)
summary(gpa_lm)

##
## Call:
## lm(formula = GPA ~ ACT + High_School, data = gpa)
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##
## Residuals:
## Min 1Q Median 3Q Max
## -2.10265 -0.29862 0.07311 0.40355 1.31336
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.292793 0.136725 9.455 < 2e-16 ***
## ACT 0.037210 0.005939 6.266 6.48e-10 ***
## High_School 0.010022 0.001279 7.835 1.74e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5672 on 702 degrees of freedom
## Multiple R-squared: 0.2033, Adjusted R-squared: 0.2011
## F-statistic: 89.59 on 2 and 702 DF, p-value: < 2.2e-16

Suppose that an analysis of a large dataset from another comparable university gave a coefficient of 0.03528
for the ACT variable when fitting a linear model using ACT score and high school rank. The admissions
director is interested whether the difference could reasonably be chance variation due to having only a
sample of 705 students, or whether the universities have differences beyond what can be explained by sample
variation. Suppose that population value for this school is also 0.03528. Supposing the usual probability
model for a linear model (which you don’t have to write out here) and using a normal approximation, find
an expression for the probability that the difference between the coefficient estimate for the data (0.03721)
and the hypothetical true value (0.03528) is larger in magnitude than the observed value (0.03721-0.03528).
Write your answer as a call to pnorm(). Your call to pnorm may involve specifying any necessary numerical
calculations that you can’t work out without access to a computer or calculator.

Solution:

1-pnorm(0.03721,mu=0.03538,sd=0.005939)

gives the probability of observing a bigger value of the estimated coefficient under the assumed model, making
a normal approximation using the calculated standard error. By symmetry, the chance of the difference being
larger in magnitude (i.e., too large or too small) is twice the chance of being bigger. So, the answer is

2*(1-pnorm(0.03721,mu=0.03538,sd=0.005939))

Q1-2. Let X1, X2, . . . , Xn be independent random variables each of which take the value 0 with probability
0.5, 1 with probability 0.25 and -1 with probability 0.25. Find the mean and variance of X1. Use this to find
the mean and variance of X̄ = 1

n

∑n
i=1 Xi. Now suppose n = 100 and suppose that X̄ is well approximated

by a normal distribution. Find a number c such that P(−c < X̄ < c) is approximately 0.9. Write your answer
as a call to qnorm(). Your call to qnorm may involve specifying any necessary numerical calculations that
you can’t work out without access to a computer or calculator.

Q1-3. Let X1, X2, . . . , Xn be independent random variables each of which take value 0 with probability 1/3
and 1 with probability 2/3.
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(a) Use the definitions and basic properties of expectation and variance to find the expected value and
variance of X1.

(b) Use these results to find the mean and variance of X̄ = 1
n

∑n
i=1 Xi. (You might notice that this

calculation is related to the binomial distribution. You can use that to check your work, if you like, but
you are asked to find the solution directly.)

(c) Now suppose n = 50 and suppose that X̄ is well approximated by a normal distribution. Find
P(0.45 < X̄ < 0.55). Write your answer as a call to pnorm(). Your call to pnorm may involve specifying
any necessary numerical calculations that you can’t work out without access to a computer or calculator.

Q1-4. Let X1, X2, . . . , Xn be independent random variables each of which take the value 0 with probability
0.25, and 4 with probability 0.75. Find the mean and variance of X1. Use this to find the mean and variance
of X =

∑n
i=1 Xi. Now suppose n = 200 and suppose that X is well approximated by a normal distribution.

Find a number c such that P[X < c] is approximately 0.9. Write your answer as a call to qnorm(). Your call
to qnorm may involve specifying any necessary numerical calculations that you can’t work out without access
to a computer or calculator.

Solution:

E(X1) = 0× 0.25 + 4× 0.75 = 3

E(X2
1 ) = 0× 0.25 + 42 × 0.75 = 12

V ar(X1) = E(X2
1 )− (E(X1))2 = 12− 9 = 3

Thus, E(X) = E(
∑n

i=1 Xi) = nEX1 = 600

V ar(X̄) = V ar(
∑n

i=1 Xi) = nV ar(X1) = 600

c = qnorm(0.9, 600, sqrt(600))

Q1-5. Let X1, X2, . . . , Xn be independent random variables each of which has possible values 0, 1 and -1. The
probability of taking 0 is 0.2 and the probability of 1 is 0.4. Find the mean and variance of X = 1

n

∑n
i=1 Xi.

Now suppose n = 100 and suppose that X is well approximated by a normal distribution. Find a number c
such that P[X > c] is approximately 0.8. Write your answer as a call to qnorm(). Your call to qnorm may
involve specifying any necessary numerical calculations that you can’t work out without access to a computer
or calculator.

Q2. Prediction using a linear model

Q2-1. To investigate the consequences of metal poisoning, 25 beakers of minnow larvae were exposed to
varying levels of copper and zinc. The data were

toxicity <- read.table("toxicity.txt")
head(toxicity)
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## Copper Zinc Protein
## 1 0 0 201
## 2 0 375 186
## 3 0 750 173
## 4 0 1125 110
## 5 0 1500 115
## 6 38 0 202

lm_toxicity <- lm(Protein~Copper+Zinc,data=toxicity)
round(coef(summary(lm_toxicity),3))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 196 9 23 0
## Copper 0 0 -2 0
## Zinc 0 0 -6 0

The sample linear model is y = Xb+ e. Here, yi is a measurement of total larva protein at the end of the
experiment (in microgram, µg). X = [xij ] is a 25× 3 matrix where xi1 = 1, xi2 is copper concentration (in
parts per million, ppm) in beaker i , and xi3 is zinc concentration (in parts per million, ppm) in beaker i.

Suppose we’re interested in predicting the protein in a new observation at 100ppm copper and 1000ppm zinc.

(a) Specify the values in a row matrix x∗ so that y∗ = x∗b gives a least squares prediction of the new
observation.

(b) Explain how to use the data vector y, the design matrix X, and your row vector x∗ to construct a
prediction interval that will cover the new measurement in approximately 95% of replications. Your
answer should include formulas to construct this interval.

(c) Explain briefly some things you would look for to check whether your prediction interval is reasonable.

Solution:

(a).

x∗ = (1, 100, 1000)

(b).

V ar(ŷ∗ + εnew) = V ar(x∗T β̂ + εnew)
= V ar(x∗T β̂) + V ar(εnew)
= σ2(x∗T (XTX)−1x∗ + 1)

(1)

Thus the P.I. is
ŷ∗ ± 1.96s

√
x∗T (XTX)−1x∗ + 1,

where s is the residual standard error.

(c).

We can check if x∗ is within the support of the given data set to avoid extrapolation; The prediction interval
should be large than the confidence intervel; ŷ∗ should fall within the predection intervel.
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Q2-2. Consider the birth weight data set we have seen in lab. For this question, we will look at columns bwt
(birth weight), lwt (mother’s weight), age (mother’s age) and race (mother’s race, 1 for white, 2 for black
and 3 for other).

library(MASS)
data(birthwt)
head(birthwt,3)

## low age lwt race smoke ptl ht ui ftv bwt
## 85 0 19 182 2 0 0 0 1 0 2523
## 86 0 33 155 3 0 0 0 0 3 2551
## 87 0 20 105 1 1 0 0 0 1 2557

lm_bw <- lm(bwt ~ lwt + age +factor(race), data = birthwt)
summary(lm_bw)$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2461.147482 314.722327 7.8200600 3.968682e-13
## lwt 4.619545 1.787729 2.5840294 1.054066e-02
## age 1.298831 10.107701 0.1284991 8.978943e-01
## factor(race)2 -447.614691 161.369310 -2.7738527 6.110757e-03
## factor(race)3 -239.356515 115.188920 -2.0779474 3.910220e-02

Now suppose we are interested in predicting the birthweight of a baby who has a 30-year-old white mother
with weight 130.

(a) Specify a row matrix x∗ so that ŷ∗ = x∗b gives the least square predictor.

(b) Write a matrix expression for the variance of Ŷ ∗ = x∗β̂ where β̂ is the least squares fit on model-
generated data, i.e., β̂ = (XTX)−1XTY .

Q2-3. We analyze the following data on video game sales in North America. This dataset records sales
(in millions of dollars) for 580 games within three genres (shooter, sports and action) from two publishers
(Electronic Arts and Activision) with years of release from 2006 to 2010 inclusive, on ten different platforms.

vg <- read.table("vg_sales.txt") ; head(vg)

## Name Platform Year Genre Publisher Sales
## 1 Call of Duty: Black Ops X360 2010 Shooter Activision 9.70
## 2 Call of Duty: Black Ops PS3 2010 Shooter Activision 5.99
## 3 Call of Duty: World at War X360 2008 Shooter Activision 4.81
## 4 Call of Duty: World at War PS3 2008 Shooter Activision 2.73
## 5 FIFA Soccer 11 PS3 2010 Sports Electronic Arts 0.61
## 6 Madden NFL 07 PS2 2006 Sports Electronic Arts 3.63

Consider the probability model Yijk = α+ βj + γk + εijk where j = 1, 2, 3 specifies the genre (shooter, sports
and action, respectively), k = 1, 2 gives the publisher (Electronic Arts and Activision, respectively), and i
ranges over all the games in each (j, k) category. In order to code these factors, we set β1 = γ1 = 0. As usual,
εijk gives an independent N [0, σ] error for game (i, j, k). Parameters in this probability model are estimated
by least squares as follows:
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lm_vg1 <- lm(Sales ~ Publisher + Genre, data = vg)
summary(lm_vg1)

##
## Call:
## lm(formula = Sales ~ Publisher + Genre, data = vg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8444 -0.2662 -0.1352 0.0858 8.8556
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.271127 0.061346 4.420 1.18e-05 ***
## PublisherElectronic Arts -0.004955 0.071076 -0.070 0.944
## GenreShooter 0.573315 0.095061 6.031 2.91e-09 ***
## GenreSports 0.118062 0.077585 1.522 0.129
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7818 on 576 degrees of freedom
## Multiple R-squared: 0.06154, Adjusted R-squared: 0.05665
## F-statistic: 12.59 on 3 and 576 DF, p-value: 5.546e-08

Note that the output of summary(lm_vg1) tells you that R is using β = (α, β2, β3, γ2) as the parameter
vector.

(a) Write the first six lines of the design matrix X in the matrix version of the linear model Y = Xβ + ε.
Hint: the output from head(vg) tells you what the values of j and k are for each of the first six
observations.

(b) Suppose we’re interested in the predicting the North American Sales of a shooting game released by
Activision. Specify a row matrix x∗ such that y∗ = x∗b gives the least square predictor of this quantity.

Q2-4. Recall the nels88 dataset from lab. These data are a subset of the National Education Longitudinal
Study of 1988 which examined schoolchildren’s performance on a math test score in 8th grade. ses is the
socioeconomic status of parents and paredu is the parents highest level of education achieved (less than high
school, high school, college, BA, MA, PhD). The data were as follows:

library(faraway)
data(nels88)
head(nels88)

## sex race ses paredu math
## 1 Female White -0.13 hs 48
## 2 Male White -0.39 hs 48
## 3 Male White -0.80 hs 53
## 4 Male White -0.72 hs 42
## 5 Female White -0.74 hs 43
## 6 Female White -0.58 hs 57
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We fit a regression model to the data. The rounded co-efficients for the model are provided below:

fit <- lm(math ~ ses + paredu, data = nels88)
round(summary(fit)$coef)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 59 2 33 0
## ses 3 1 2 0
## pareducollege -8 2 -4 0
## pareduhs -12 3 -5 0
## paredulesshs -13 3 -4 0
## pareduma -1 2 0 1
## pareduphd -2 3 -1 0

(a) Describe a suitable probability model, in matrix form, to give a sample version of the linear model that
has been fit above.

Solution: y = Xb + e

where

• y = (y1, . . . , yn) is a vector random variable modeling schoolchildren’s performance on a math test in
8th grade.

• X = [xij ] is a n× 7 matrix with xi1 = 1 for i = 1, . . . , n, xi2 is the parents’ socioeconomic status for
student i, xi3 equals 1 if ‘paredu’ = college and 0 otherwise, xi4 equals 1 if ‘paredu’ = high school and
0 otherwise, xi5 equals 1 if ‘paredu’ = below high school and 0 otherwise, xi6 equals 1 if ‘paredu’ =
MA and 0 otherwise, and xi7 equals 1 if ‘paredu’ = PhD and 0 otherwise.

• b = (b1, . . . , b7) are the true but unknown vector of coefficients.

• e = (e1, . . . , en) is a vector random variable modeling chance variation.

• All vectors are interpreted as column vectors.

(b) Find the predicted math score for a student whose family has an ses value of -0.5 and whose parents’
highest education level is high school (hs).

Solution:

ŷ = 59 + 3(−0.5)− 8(0)− 12(1)− 13(0)− 1(0)− 2(0)

ŷ = 59− 1.5− 12

ŷ = 45.5

The predicted math score for this student is 45.5.

(c) How is the residual standard error calculated for this model? (Give a formula).

Solution:

s =
√

1
n−p

∑n
i=1(yi − ŷi)2 =

√
1

n−p

∑n
i=1(yi − [Xb]i)2

where
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• n− p is the degrees of freedom in the model; p is equal to 7

• yi is the observed math score in 8th grade for student i

• ŷi is the predicted math score in 8th grade for student i from the model above.

• X = [xij ] is a n× 7 matrix with xi1 = 1 for i = 1, . . . , n, xi2 is the parents’ socioeconomic status for
student i, xi3 equals 1 if ‘paredu’ = college and 0 otherwise, xi4 equals 1 if ‘paredu’ = high school and
0 otherwise, xi5 equals 1 if ‘paredu’ = below high school and 0 otherwise, xi6 equals 1 if ‘paredu’ =
MA and 0 otherwise, and xi7 equals 1 if ‘paredu’ = PhD and 0 otherwise.

• b = (b1, . . . , b7) are the estimated coefficients.

Q3. Comparing means using a linear model

Q3-1. Consider the following linear model for the mouse diet data that we have studied repeatedly

mice <- read.table("femaleMiceWeights.csv",sep=",",header=TRUE)
head(mice)

## Diet Bodyweight
## 1 chow 21.51
## 2 chow 28.14
## 3 chow 24.04
## 4 chow 23.45
## 5 chow 23.68
## 6 chow 19.79

lm_mice <- lm(Bodyweight~Diet,data=mice)
model.matrix(lm_mice)

## (Intercept) Diethf
## 1 1 0
## 2 1 0
## 3 1 0
## 4 1 0
## 5 1 0
## 6 1 0
## 7 1 0
## 8 1 0
## 9 1 0
## 10 1 0
## 11 1 0
## 12 1 0
## 13 1 1
## 14 1 1
## 15 1 1
## 16 1 1
## 17 1 1
## 18 1 1
## 19 1 1
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## 20 1 1
## 21 1 1
## 22 1 1
## 23 1 1
## 24 1 1
## attr(,"assign")
## [1] 0 1
## attr(,"contrasts")
## attr(,"contrasts")$Diet
## [1] "contr.treatment"

(a) Write down the sample linear model fitted in lm_mice using the subscript format.

(b) Explain how to obtain estimates of the means of both treatment groups, and the difference between
these means, from the coefficients of this sample linear model.

Q3-2. Let’s consider the crabs data set we studied in lab. Recall that species (sp) is a factor with two levels,
Blue (B) and Orange (O). We want to study the difference of frontal lobe size (FL) of two species.

library(MASS)
data(crabs)
head(crabs)

## sp sex index FL RW CL CW BD
## 1 B M 1 8.1 6.7 16.1 19.0 7.0
## 2 B M 2 8.8 7.7 18.1 20.8 7.4
## 3 B M 3 9.2 7.8 19.0 22.4 7.7
## 4 B M 4 9.6 7.9 20.1 23.1 8.2
## 5 B M 5 9.8 8.0 20.3 23.0 8.2
## 6 B M 6 10.8 9.0 23.0 26.5 9.8

Consider the probability model Yi = µ1xBi + µ2xOi + εi for i = 1, ..., 200. Yi is the frontal lobe size of crab i.
xBi is 1 if crab i is of species Blue and 0 otherwise. Similarly, xOi is 1 if crab i is of species Orange and 0
otherwise. εi are i.i.d with mean 0 and variance σ2. This model can be fitted to the crabs dataset in R using
the lm() function. The resulting summary is provided below.

lm_crab <- lm(FL~sp-1, data=crabs)
summary(lm_crab)

##
## Call:
## lm(formula = FL ~ sp - 1, data = crabs)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.010 -2.410 0.390 2.169 7.244
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## spB 14.056 0.315 44.62 <2e-16 ***
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## spO 17.110 0.315 54.31 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.15 on 198 degrees of freedom
## Multiple R-squared: 0.9615, Adjusted R-squared: 0.9611
## F-statistic: 2470 on 2 and 198 DF, p-value: < 2.2e-16

(a) Interpret the meaning of µ1 and µ2 in the above probability model?

(b) Build a 95% confidence interval for µ1 using normal approximation

(c) Recall in homework we know that the full estimated covariance matrix of µ̂ = (µ̂1, µ̂2) can be found by

V <- summary(lm_crab)$cov.unscaled * summary(lm_crab)$s^2
V

## spB spO
## spB 0.09923719 0.00000000
## spO 0.00000000 0.09923719

Use V and information provided in summary(lm_crab) to write down an expression that constructs a 95%
confidence interval for µ1 − µ2.
Solution:
(a).
µ1 is the population mean frontal lobe size for blue crabs. µ2 is the population mean frontal lobe size for
orange crabs.
(b).
(14.056− 1.96 ∗ 0.315, 14.056 + 1.96 ∗ 0.315) = (13.44, 14.67)
(c).
Let a = (1,−1)T .
V ar(aT µ̂) = aTV ar(µ̂)a = aTV a = 0.198
µ̂1 − µ̂2 = 14.056− 17.110 = −3.054
Thus we have the 95% C.I. (−3.054− 1.96 ∗

√
0.198,−3.054 + 1.96 ∗

√
0.198) = (−3.926,−2.182)

Q3-3. We analyze the following data on video game sales in North America. This dataset records sales
(in millions of dollars) for 580 games within three genres (shooter, sports and action) from two publishers
(Electronic Arts and Activision) with years of release from 2006 to 2010 inclusive, on ten different platforms.
We consider the following analysis

vg <- read.table("vg_sales.txt") ; head(vg)

## Name Platform Year Genre Publisher Sales
## 1 Call of Duty: Black Ops X360 2010 Shooter Activision 9.70
## 2 Call of Duty: Black Ops PS3 2010 Shooter Activision 5.99
## 3 Call of Duty: World at War X360 2008 Shooter Activision 4.81
## 4 Call of Duty: World at War PS3 2008 Shooter Activision 2.73
## 5 FIFA Soccer 11 PS3 2010 Sports Electronic Arts 0.61
## 6 Madden NFL 07 PS2 2006 Sports Electronic Arts 3.63
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lm_vg2 <- lm(Sales ~ Publisher-1, data = vg)
summary(lm_vg2)

##
## Call:
## lm(formula = Sales ~ Publisher - 1, data = vg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.4412 -0.3212 -0.2136 0.0464 9.2588
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## PublisherActivision 0.44124 0.05095 8.661 <2e-16 ***
## PublisherElectronic Arts 0.41361 0.04434 9.327 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8055 on 578 degrees of freedom
## Multiple R-squared: 0.2189, Adjusted R-squared: 0.2162
## F-statistic: 81 on 2 and 578 DF, p-value: < 2.2e-16

The fitted probability model is Yij = πj + εij where j = 1, 2 specifies the publisher (Electronic Arts and
Activision, respectively), and i ranges over all the games for each publisher. As usual, εij gives an independent
N [0, σ] error for game (i, j). Parameters in this probability model are estimated by least squares as follows:

(a) What do the coefficients in the summary above measure?

(b) Explain how to build a 95% confidence interval for Activision sales using a normal approximation. You
can use the property that P[Z < 1.96] = 0.975 when Z has a N [0, 1] distribution.

Q3-4. Recall the crabs dataset used in lab. Here, BD refers to the body depth of the crabs, and sp denotes
the colour of the crabs, which is one of blue or orange.

library(MASS)
data(crabs)
head(crabs)

## sp sex index FL RW CL CW BD
## 1 B M 1 8.1 6.7 16.1 19.0 7.0
## 2 B M 2 8.8 7.7 18.1 20.8 7.4
## 3 B M 3 9.2 7.8 19.0 22.4 7.7
## 4 B M 4 9.6 7.9 20.1 23.1 8.2
## 5 B M 5 9.8 8.0 20.3 23.0 8.2
## 6 B M 6 10.8 9.0 23.0 26.5 9.8

crabs$mu1 <- (crabs$sp == "B")*1
crabs$mu2 <- (crabs$sp == "O")*1
crabs$mu3 <- 1
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crabs$mu4 <- 1-crabs$mu1
crabs$mu_diff <- crabs$mu2
fit1 <- lm(BD ~ mu1+mu2-1, data = crabs)
fit2 <- lm(BD ~ mu3 + mu_diff - 1, data = crabs)
fit3 <- lm(BD ~ mu2, data = crabs)
fit4 <- lm(BD ~ 1-mu1, data = crabs)
fit5 <- lm(BD ~ mu4, data = crabs)
fit6 <- lm(BD~ mu1+mu2, data = crabs)

(a) Would any of the models (fit1 to fit6) give the same coefficients? If yes, list them.

Solution:

Yes, fit2, fit3, and fit5 would provide the same coefficients. fit2 would give an intercept term (mu3)
and an estimate of the difference in body depth between the orange and the blue crabs (mu2 - mu1) which
is coded as mu2 or mu_diff. From this, we can determine that fit3 would also provide the same model as
fit2 since by default R includes an intercept value. Similarly, we can determine that fit5 would provide the
same model as fit2 and fit3 since mu4 is the same as mu2.

The following are the coefficients obtained from each of the models (for comparison purposes only):

summary(fit1)$coef

## Estimate Std. Error t value Pr(>|t|)
## mu1 12.583 0.3109965 40.46026 1.113535e-97
## mu2 15.478 0.3109965 49.76905 6.839989e-114

summary(fit2)$coef

## Estimate Std. Error t value Pr(>|t|)
## mu3 12.583 0.3109965 40.460262 1.113535e-97
## mu_diff 2.895 0.4398155 6.582306 4.059563e-10

summary(fit3)$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.583 0.3109965 40.460262 1.113535e-97
## mu2 2.895 0.4398155 6.582306 4.059563e-10

summary(fit4)$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.0305 0.242168 57.93706 1.524559e-126

summary(fit5)$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 12.583 0.3109965 40.460262 1.113535e-97
## mu4 2.895 0.4398155 6.582306 4.059563e-10
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summary(fit6)$coef

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 15.478 0.3109965 49.769049 6.839989e-114
## mu1 -2.895 0.4398155 -6.582306 4.059563e-10

Now consider the probability model Yi = µ1xBi + µ2xOi + εi, where i = 1, . . . , 200. Yi models the body
weight of observation i. xBi is 1 if sp=B for observation i and 0 otherwise. Similarly, xOi is 1 if sp=O for
observation i and 0 otherwise. ε1, . . . , ε200 are i.i.d with mean 0 and variance σ2. This model can be fitted to
the crabs dataset in R using the lm() function. The resulting summary is provided below.

summary(fit1)

##
## Call:
## lm(formula = BD ~ mu1 + mu2 - 1, data = crabs)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.0780 -2.1830 0.0695 2.3170 7.4170
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## mu1 12.583 0.311 40.46 <2e-16 ***
## mu2 15.478 0.311 49.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.11 on 198 degrees of freedom
## Multiple R-squared: 0.9541, Adjusted R-squared: 0.9536
## F-statistic: 2057 on 2 and 198 DF, p-value: < 2.2e-16

(b) Interpret µ1 and µ2 in the above model?

Solution:

µ1 is the mean body depth of blue crabs, and µ2 is the mean body depth of orange crabs.

(c) Recall from homework that the estimated covariance matrix of β̂ = (µ̂1, µ̂2) can be found by

V <- summary(fit1)$cov.unscaled * summary(fit1)$s^2; V

## mu1 mu2
## mu1 0.09671882 0.00000000
## mu2 0.00000000 0.09671882

Construct a 95% confidence interval for µ1 − µ2 using normal approximation. Based on this, do we have
sufficient evidence to conclude that µ1 = µ2 at the 95% level?

Solution:
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1. Finding the variance of µ1 − µ2

V ar(AY) = AV ar(Y)AT

A =
[
1− 1

]
[
1− 1

] [0.09671882 0.00000000
0.00000000 0.09671882

] [
1
−1

]
[
0.09671882 −0.09671882

] [ 1
−1

]
0.09671882 + 0.09671882 = 0.1934376

2. Constructing the confidence interval.

(µ1 − µ2)± zα
2
∗ sd(µ1 − µ2)

(12.583− 15.478)± 1.96 ∗
√

0.1934376
(−3.757038,−2.032962)
No; we do not have enough evidence to conclude that µ1 = µ2 ath the 95% level.

Q4. Making and interpreting an F test

Q4-1. The following is an ANOVA analysis of the football field goal kicking data that we have seen repeatedly.
Recall that Name is the name of the kicker, FGt is the field goal percentage for the kicker in that year, and
FGtM1 is the percentage for that kicker in the previous year.

kickers <- read.table("FieldGoals2003to2006.csv",header=T,sep=",")
kickers[1:5,c("Name","Teamt","FGt","FGtM1")]

## Name Teamt FGt FGtM1
## 1 Adam Vinatieri NE 73.5 90.0
## 2 Adam Vinatieri NE 93.9 73.5
## 3 Adam Vinatieri NE 80.0 93.9
## 4 Adam Vinatieri IND 89.4 80.0
## 5 David Akers PHI 82.7 88.2

lm_kickers <- lm(FGt~FGtM1+Name,data=kickers)
anova(lm_kickers)

## Analysis of Variance Table
##
## Response: FGt
## Df Sum Sq Mean Sq F value Pr(>F)
## FGtM1 1 87.2 87.199 2.2597 0.1383978
## Name 18 2252.5 125.137 3.2429 0.0003858 ***
## Residuals 56 2161.0 38.589
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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(a) Write out the null and alternative hypotheses corresponding to the hypothesis test constructed in the
Name row of the ANOVA table.

(b) Describe how this test is constructed, using formulas when appropriate. You may define a residual sum
of squares in words, without giving an explicit formula.

(c) Interpret the outcome of this test.

Solution:
(a).
Under H0, we have the model
Yi = β0 + β1xi1 + εi,i = 1, ..., n,
where Yi is the field goal percentage for player i in that year, xi1 is the field goal percentage for player i in
the previous year. εi are i.i.d with mean 0 and variance σ2.
Under Ha, we have
Yi = β0 + β1xi1 + β2xi2 + ...+ β19xi19 + εi,i = 1, ..., n.
xij ,j = 2, ...19 is the player name indicator. Other letters are defined same as the model under H0.
For the F test, we are testing
H0 : β2 = ... = β19 = 0 against Ha:one of βj 6= 0,j = 2, ...19.
(b).

F = (RSS0 −RSSa)/d
RSSa/(n− q)

,

where RSS0 is the residual sum of squares for the null model while RSSa is the residual sum of squares
under the alternative. d is the difference in the degrees of freedom between the null and the alternative, and
(n− q) is the degrees of freedom of error in the alternative model.
(c).
Since the p-value is 0.0003858 < 0.05, we are able to reject H0. Thus name is an important factor when
predicting a player’s current field goal percentage.

Q4-2. Consider the birth weight data set we have seen in lab. For this question, we will look at columns bwt
(birth weight), lwt (mother’s weight), age (mother’s age) and race (mother’s race, 1 for white, 2 for black
and 3 for other).

library(MASS)
data(birthwt)

head(birthwt)

## low age lwt race smoke ptl ht ui ftv bwt
## 85 0 19 182 2 0 0 0 1 0 2523
## 86 0 33 155 3 0 0 0 0 3 2551
## 87 0 20 105 1 1 0 0 0 1 2557
## 88 0 21 108 1 1 0 0 1 2 2594
## 89 0 18 107 1 1 0 0 1 0 2600
## 91 0 21 124 3 0 0 0 0 0 2622
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We want to study the relationship between birthweight and race using an F test, while mother’s weight and
age are included as additional explanatory variables. Let the null hypothesis, H0, be the probability model
where birth weight is modeled to depend linearly on mother’s weight and age. Let Ha be the probability
model where H0 is extended to include race as a factor, as fitted in R by

lm_bw <- lm(bwt ~ lwt + age +factor(race), data = birthwt)

The results from summary(lm_bw) and anova(lm_bw) are as follows

summary(lm_bw)

##
## Call:
## lm(formula = bwt ~ lwt + age + factor(race), data = birthwt)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2103.50 -429.68 41.74 486.10 1902.20
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2461.147 314.722 7.820 3.97e-13 ***
## lwt 4.620 1.788 2.584 0.01054 *
## age 1.299 10.108 0.128 0.89789
## factor(race)2 -447.615 161.369 -2.774 0.00611 **
## factor(race)3 -239.357 115.189 -2.078 0.03910 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 704.9 on 184 degrees of freedom
## Multiple R-squared: 0.08536, Adjusted R-squared: 0.06548
## F-statistic: 4.293 on 4 and 184 DF, p-value: 0.00241

anova(lm_bw)

## Analysis of Variance Table
##
## Response: bwt
## Df Sum Sq Mean Sq F value Pr(>F)
## lwt 1 3448639 3448639 6.9398 0.009148 **
## age 1 334183 334183 0.6725 0.413247
## factor(race) 2 4750632 2375316 4.7799 0.009467 **
## Residuals 184 91436202 496936
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(a) Write out the null and alternative hypotheses of the F test by completely specifying the probability
models.

Solution:

H0 : Yi = β0 + β1Xi1 + β2Xi2 + εi, i = 1, . . . , 189
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Ha : Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + β4Xi4 + εi, i = 1, . . . , 189
where Yi is the birth weight of infant i, Xi1 is the weight of mother i, Xi2 is the age of mother i, Xi3 is an
indicator of whether mother i is black,Xi4 is an indicator of whether mother i is another race , and εi is the
chance variation.

(b) Interpret the results in anova(lm_gpa). Specifically, read the sample test statistic from R output, give
the distribution of the model-generated test statistic under H0, and explain how the resulting p-value
is calculated and interpreted. Your answer should givie relevant formulas, though you may define a
residual sum of squares in words without explicitly saying how it is constructed.

Solution:
The sample test statistic is f = 4.7799 and the model generated test statistic is F ∼ Fd,n−q = F2,184, the
F distribution on 2 and 184 degrees of freedom. The p-value is calculated as P (F > f) = 0.009467. Using
a level of 0.05, we reject the null hypothesis and conclude that the race of the mother has a significant
association with the birth weight of the child.
The sample test statistic is calculated as follows:

f = (RSS0−RSSa)/d
RSSa/(n−q) , where RSS0 and RSSa are the residual sum of squares for the null and alternative

models respectively, d is the difference in the degrees of freedom between the null and alternative models, q is
the number of explanatory variables in the alternative model, and (n− q) is the degrees of freedom of error
in the alternative model.

Q4-3. We analyze the following data on video game sales in North America. This dataset records sales
(in millions of dollars) for 580 games within three genres (shooter, sports and action) from two publishers
(Electronic Arts and Activision) with years of release from 2006 to 2010 inclusive, on ten different platforms.
We are interested in considering whether there is a significant pattern in the sales of different game genres,
which leads us to carry out the following analysis:

vg <- read.table("vg_sales.txt") ; head(vg)

## Name Platform Year Genre Publisher Sales
## 1 Call of Duty: Black Ops X360 2010 Shooter Activision 9.70
## 2 Call of Duty: Black Ops PS3 2010 Shooter Activision 5.99
## 3 Call of Duty: World at War X360 2008 Shooter Activision 4.81
## 4 Call of Duty: World at War PS3 2008 Shooter Activision 2.73
## 5 FIFA Soccer 11 PS3 2010 Sports Electronic Arts 0.61
## 6 Madden NFL 07 PS2 2006 Sports Electronic Arts 3.63

lm_vg3 <- lm(Sales ~ Publisher + Genre, data = vg)
anova(lm_vg3)

## Analysis of Variance Table
##
## Response: Sales
## Df Sum Sq Mean Sq F value Pr(>F)
## Publisher 1 0.11 0.1086 0.1777 0.6735
## Genre 2 22.98 11.4899 18.7971 1.236e-08 ***
## Residuals 576 352.08 0.6113
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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(a) Let πj be a factor for publisher, where j = 1, 2 specifies Electronic Arts and Activision, respectively.
Let γk be a factor for genre, where k = 1, 2, 3 specifies shooter, sports and action respectively. Let yijk

be the sales for the ith game having publisher j and genre k, and let Yijk be a probability model for
yijk. Using this notation, complete the explicit specification of a the null and alternative hypothesis for
an F-test that evaluates whether there is a statistically significant difference between sales of different
genres.

(b) Explain how the test statistic and p-value are constructed for this F-test, giving relevant formulas. You
may define a residual sum of squares in words, without writing out an explicit formula for this.

(c) Interpret the results of this test, as given in the above ANOVA table.

Q4-4. Recall the nels88 dataset from lab. These data are a subset of the National Education Longitudinal
Study of 1988 which examined schoolchildren’s performance on a math test score in 8th grade. ses is the
socioeconomic status of parents and paredu is the parents highest level of education achieved (less than high
school, high school, college, BA, MA, PhD). race determines the race of each student which is one of White,
Black, Asian or Hispanic.

library(faraway)
data(nels88)
head(nels88)

## sex race ses paredu math
## 1 Female White -0.13 hs 48
## 2 Male White -0.39 hs 48
## 3 Male White -0.80 hs 53
## 4 Male White -0.72 hs 42
## 5 Female White -0.74 hs 43
## 6 Female White -0.58 hs 57

fit <- lm(math ~ ses + paredu + race, data = nels88)
summary(fit)

##
## Call:
## lm(formula = math ~ ses + paredu + race, data = nels88)
##
## Residuals:
## Min 1Q Median 3Q Max
## -21.4072 -5.8638 -0.0508 5.7936 23.5985
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 58.7446 1.8514 31.730 < 2e-16 ***
## ses 2.5560 1.3663 1.871 0.062550 .
## pareducollege -7.4794 2.1637 -3.457 0.000642 ***
## pareduhs -12.1449 2.6950 -4.507 1.01e-05 ***
## paredulesshs -13.1456 3.3711 -3.899 0.000124 ***
## pareduma -0.8131 2.2451 -0.362 0.717532
## pareduphd -1.9900 2.5241 -0.788 0.431208
## raceAsian 1.6054 3.1137 0.516 0.606583
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## raceBlack -2.4562 1.6192 -1.517 0.130553
## raceHispanic 0.8097 1.9795 0.409 0.682859
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.448 on 250 degrees of freedom
## Multiple R-squared: 0.4445, Adjusted R-squared: 0.4245
## F-statistic: 22.23 on 9 and 250 DF, p-value: < 2.2e-16

anova(fit)

## Analysis of Variance Table
##
## Response: math
## Df Sum Sq Mean Sq F value Pr(>F)
## ses 1 12391.4 12391.4 173.6329 < 2.2e-16 ***
## paredu 5 1642.4 328.5 4.6029 0.000491 ***
## race 3 241.3 80.4 1.1272 0.338619
## Residuals 250 17841.4 71.4
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Suppose we are interested in finding whether the race of the student is associated with their math score, after
controlling for the other variables.

(a) Write out the null and alternative hypothesis for carrying out the above analysis. (Describe all
parameters clearly)

(b) What test would you carry out? Clearly explains how the test is constructed, giving relevant formulas.
You may define a residual sum of squares in words, without giving an explicit formula.

(c) Report on the conclusions of your test based on the R output provided.

License: This material is provided under an MIT license
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