Quiz 2, STATS 401 W18

In lab on 3/29 or 3/30

This document produces different random quizzes each time the source code generating it is run. The actual quiz will be a realization generated by this random process, or something similar.

Instructions. You have a time allowance of 50 minutes, though the quiz may take you much less time and you can leave lab once you are done. The quiz is closed book, and you are not allowed access to any notes. Any electronic devices in your possession must be turned off and remain in a bag on the floor.

Formulas

The following formulas will be provided. To use these formulas properly, you need to make appropriate definitions of the necessary quantities.

$$
\begin{align*}
& \mathbf{b}=\left(\mathbb{X}^{\mathrm{T}} \mathbb{X}\right)^{-1} \mathbb{X}^{\mathrm{T}} \mathbf{y} \tag{1}\\
& \operatorname{Var}(\hat{\boldsymbol{\beta}})=\sigma^{2}\left(\mathbb{X}^{\mathrm{T}} \mathbb{X}\right)^{-1} \\
& \operatorname{Var}(\mathbb{A} \mathbf{Y})=\mathbb{A} \operatorname{Var}(\mathbf{Y}) \mathbb{A}^{\top} \\
& \operatorname{Var}(X)=\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2} \\
& \operatorname{Cov}(X, Y)=\mathrm{E}[(X-\mathrm{E}[X])(Y-\mathrm{E}[Y])]=\mathrm{E}[X Y]-\mathrm{E}[X] \mathrm{E}[Y]
\end{align*}
$$

(6) The binomial (n, p) distribution has mean $n p$ and variance $n p(1-p)$.

From ?pnorm:

```
pnorm(q, mean = 0, sd = 1)
qnorm(p, mean = 0, sd = 1)
q: vector of quantiles.
p: vector of probabilities.
```


Q1. Calculating means and variances, and making a normal approximation

Q1-1. Recall the following analysis where the director of admissions at a large state university wants to assess how well academic success can be predicted based on information available at admission. She fits a linear model to predict freshman GPA using ACT exam scores and percentile ranking of each student within their high school, as follows.

```
gpa <- read.table("gpa.txt",header=T)
gpa_lm <- lm(GPA~ACT+High_School,data=gpa)
summary(gpa_lm)
##
## Call:
## lm(formula = GPA ~ ACT + High_School, data = gpa)
```

```
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.10265 -0.29862 0.07311 0.40355 1.31336
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.292793 0.136725 9.455 < 2e-16 ***
## ACT 0.037210 0.005939 6.266 6.48e-10 ***
## High_School 0.010022 0.001279 7.835 1.74e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5672 on 702 degrees of freedom
## Multiple R-squared: 0.2033, Adjusted R-squared: 0.2011
## F-statistic: 89.59 on 2 and 702 DF, p-value: < 2.2e-16
```

Suppose that an analysis of a large dataset from another comparable university gave a coefficient of 0.03528 for the ACT variable when fitting a linear model using ACT score and high school rank. The admissions director is interested whether the difference could reasonably be chance variation due to having only a sample of 705 students, or whether the universities have differences beyond what can be explained by sample variation. Suppose that population value for this school is also 0.03528. Supposing the usual probability model for a linear model (which you don't have to write out here) and using a normal approximation, find an expression for the probability that the difference between the coefficient estimate for the data (0.03721) and the hypothetical true value (0.03528) is larger in magnitude than the observed value ($0.03721-0.03528$). Write your answer as a call to pnorm(). Your call to pnorm may involve specifying any necessary numerical calculations that you can't work out without access to a computer or calculator.

Q1-2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables each of which take the value 0 with probability $0.5,1$ with probability 0.25 and -1 with probability 0.25 . Find the mean and variance of X_{1}. Use this to find the mean and variance of $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Now suppose $n=100$ and suppose that \bar{X} is well approximated by a normal distribution. Find a number c such that $\mathrm{P}(-c<\bar{X}<c)$ is approximately 0.9 . Write your answer as a call to qnorm(). Your call to qnorm may involve specifying any necessary numerical calculations that you can't work out without access to a computer or calculator.

Q1-3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables each of which take value 0 with probability $1 / 3$ and 1 with probability $2 / 3$.
(a) Use the definitions and basic properties of expectation and variance to find the expected value and variance of X_{1}.
(b) Use these results to find the mean and variance of $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. (You might notice that this calculation is related to the binomial distribution. You can use that to check your work, if you like, but you are asked to find the solution directly.)
(c) Now suppose $n=50$ and suppose that \bar{X} is well approximated by a normal distribution. Find $\mathrm{P}(0.45<\bar{X}<0.55)$. Write your answer as a call to pnorm(). Your call to pnorm may involve specifying any necessary numerical calculations that you can't work out without access to a computer or calculator.

Q1-4. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables each of which take the value 0 with probability 0.25 , and 4 with probability 0.75 . Find the mean and variance of X_{1}. Use this to find the mean and variance of $X=\sum_{i=1}^{n} X_{i}$. Now suppose $n=200$ and suppose that X is well approximated by a normal distribution. Find a number c such that $\mathrm{P}[X<c]$ is approximately 0.9 . Write your answer as a call to qnorm(). Your call to qnorm may involve specifying any necessary numerical calculations that you can't work out without access to a computer or calculator.

Q1-5. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables each of which has possible values 0,1 and -1 . The probability of taking 0 is 0.2 and the probability of 1 is 0.4 . Find the mean and variance of $X=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Now suppose $n=100$ and suppose that X is well approximated by a normal distribution. Find a number c such that $\mathrm{P}[X>c]$ is approximately 0.8 . Write your answer as a call to qnorm(). Your call to qnorm may involve specifying any necessary numerical calculations that you can't work out without access to a computer or calculator.

Q2. Prediction using a linear model

Q2-1. To investigate the consequences of metal poisoning, 25 beakers of minnow larvae were exposed to varying levels of copper and zinc. The data were

```
toxicity <- read.table("toxicity.txt")
head(toxicity)
```



```
lm_toxicity <- lm(Protein~Copper+Zinc,data=toxicity)
round(coef(summary(lm_toxicity),3))
```

\#\#	Estimate Std. Error t value $\operatorname{Pr}(>\|t\|)$			
\#\# (Intercept)	196	9	23	0
\#\# Copper	0	0	-2	0
\#\# Zinc	0	0	-6	0

The sample linear model is $\boldsymbol{y}=\mathbb{X} \boldsymbol{b}+\boldsymbol{e}$. Here, y_{i} is a measurement of total larva protein at the end of the experiment (in microgram, μg). $\mathbb{X}=\left[x_{i j}\right]$ is a 25×3 matrix where $x_{i 1}=1, x_{i 2}$ is copper concentration (in parts per million, ppm) in beaker i, and $x_{i 3}$ is zinc concentration (in parts per million, ppm) in beaker i.

Suppose we're interested in predicting the protein in a new observation at 100ppm copper and 1000ppm zinc.
(a) Specify the values in a row matrix \boldsymbol{x}^{*} so that $\boldsymbol{y}^{*}=\boldsymbol{x}^{*} \boldsymbol{b}$ gives a least squares prediction of the new observation.
(b) Explain how to use the data vector \boldsymbol{y}, the design matrix \mathbb{X}, and your row vector \boldsymbol{x}^{*} to construct a prediction interval that will cover the new measurement in approximately 95% of replications. Your answer should include formulas to construct this interval.
(c) Explain briefly some things you would look for to check whether your prediction interval is reasonable.

Q2-2. Consider the birth weight data set we have seen in lab. For this question, we will look at columns bwt (birth weight), lwt (mother's weight), age (mother's age) and race (mother's race, 1 for white, 2 for black and 3 for other).

```
library(MASS)
data(birthwt)
head(birthwt,3)
```

\#\# low age lwt race smoke ptl ht ui ftv bwt
\#\# $8500 \begin{array}{llllllllll}19 & 182 & 2 & 0 & 0 & 0 & 1 & 0 & 2523\end{array}$
\#\# 86 00
\#\# $87 \quad 0 \quad 20 \quad 105 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \quad 0 \quad 12557$
lm_bw <- lm(bwt ~ lwt + age +factor (race), data = birthwt)
summary (lm_bw) \$coef

\#\#	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
\#\# (Intercept)	2461.147482	314.722327	7.8200600	$3.968682 \mathrm{e}-13$
\#\# lwt	4.619545	1.787729	2.5840294	$1.054066 \mathrm{e}-02$
\#\# age	1.298831	10.107701	0.1284991	$8.978943 \mathrm{e}-01$
\#\# factor(race)2	-447.614691	161.369310	-2.7738527	$6.110757 \mathrm{e}-03$
\#\# factor (race)3	-239.356515	115.188920	-2.0779474	$3.910220 \mathrm{e}-02$

Now suppose we are interested in predicting the birthweight of a baby who has a 30 -year-old white mother with weight 130 .
(a) Specify a row matrix \boldsymbol{x}^{*} so that $\hat{y}^{*}=\boldsymbol{x}^{*} \boldsymbol{b}$ gives the least square predictor.
(b) Write a matrix expression for the variance of $\hat{Y}^{*}=\boldsymbol{x}^{*} \hat{\boldsymbol{\beta}}$ where $\hat{\boldsymbol{\beta}}$ is the least squares fit on modelgenerated data, i.e., $\hat{\boldsymbol{\beta}}=\left(\mathbb{X}^{\mathrm{T}} \mathbb{X}\right)^{-1} \mathbb{X}^{\mathrm{T}} \boldsymbol{Y}$.

Q2-3. We analyze the following data on video game sales in North America. This dataset records sales (in millions of dollars) for 580 games within three genres (shooter, sports and action) from two publishers (Electronic Arts and Activision) with years of release from 2006 to 2010 inclusive, on ten different platforms.

```
vg <- read.table("vg_sales.txt") ; head(vg)
```

| \#\# | | Name Platform | Year | Genre | Publisher | Sales |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| \#\# 1 | Call of Duty: Black Ops | X360 2010 | Shooter | Activision | 9.70 | |
| \#\# 2 | Call of Duty: Black Ops | PS3 2010 | Shooter | Activision | 5.99 | |
| \#\# 3 Call of Duty: World at War | X360 2008 | Shooter | Activision | 4.81 | | |
| \#\# 4 Call of Duty: World at War | PS3 2008 | Shooter | Activision | 2.73 | | |
| \#\# 5 | FIFA Soccer 11 | PS3 2010 | Sports Electronic Arts | 0.61 | | |
| \#\# 6 | Madden NFL 07 | PS2 2006 | Sports Electronic Arts | 3.63 | | |

Consider the probability model $Y_{i j k}=\alpha+\beta_{j}+\gamma_{k}+\epsilon_{i j k}$ where $j=1,2,3$ specifies the genre (shooter, sports and action, respectively), $k=1,2$ gives the publisher (Electronic Arts and Activision, respectively), and i ranges over all the games in each (j, k) category. In order to code these factors, we set $\beta_{1}=\gamma_{1}=0$. As usual, $\epsilon_{i j k}$ gives an independent $N[0, \sigma]$ error for game (i, j, k). Parameters in this probability model are estimated by least squares as follows:

```
lm_vg1 <- lm(Sales ~ Publisher + Genre, data = vg)
summary(lm_vg1)
##
## Call:
## lm(formula = Sales ~ Publisher + Genre, data = vg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8444 -0.2662 -0.1352 0.0858 8.8556
##
## Coefficients:
## Estimate Std. Error t value Pr}(>|t|
## (Intercept) 0.271127 0.061346 4.420 1.18e-05 ***
## PublisherElectronic Arts -0.004955 0.071076 -0.070 0.944
## GenreShooter 0.573315 0.095061 6.031 2.91e-09 ***
## GenreSports 0.118062 0.077585 1.522 0.129
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.7818 on 576 degrees of freedom
## Multiple R-squared: 0.06154, Adjusted R-squared: 0.05665
## F-statistic: 12.59 on 3 and 576 DF, p-value: 5.546e-08
```

Note that the output of summary (lm_vg1) tells you that R is using $\boldsymbol{\beta}=\left(\alpha, \beta_{2}, \beta_{3}, \gamma_{2}\right)$ as the parameter vector.
(a) Write the first six lines of the design matrix \mathbb{X} in the matrix version of the linear model $\boldsymbol{Y}=\mathbb{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$. Hint: the output from head (vg) tells you what the values of j and k are for each of the first six observations.
(b) Suppose we're interested in the predicting the North American Sales of a shooting game released by Activision. Specify a row matrix \boldsymbol{x}^{*} such that $y^{*}=\boldsymbol{x}^{*} \boldsymbol{b}$ gives the least square predictor of this quantity.

Q2-4. Recall the nels88 dataset from lab. These data are a subset of the National Education Longitudinal Study of 1988 which examined schoolchildren's performance on a math test score in 8th grade. ses is the socioeconomic status of parents and paredu is the parents highest level of education achieved (less than high school, high school, college, BA, MA, PhD). The data were as follows:

```
library(faraway)
data(nels88)
head(nels88)
```

\#\# sex race ses paredu math

| \#\# 1 | Female White -0.13 | hs | 48 |
| :--- | ---: | :--- | :--- | :--- |
| \#\# 2 | Male White -0.39 | hs | 48 |
| \#\# 3 | Male White -0.80 | hs | 53 |
| \#\# 4 | Male White -0.72 | hs | 42 |
| \#\# 5 Female White -0.74 | hs | 43 | |
| \#\# 6 Female White -0.58 | hs | 57 | |

We fit a regression model to the data. The rounded co-efficients for the model are provided below:

```
fit <- lm(math ~ ses + paredu, data = nels88)
round(summary(fit)$coef)
```

\#\#	Estimate Std. Error	t value $\operatorname{Pr}(>\|t\|)$		
\#\# (Intercept)	59	2	33	0
\#\# ses	3	1	2	0
\#\# pareducollege	-8	2	-4	0
\#\# pareduhs	-12	3	-5	0
\#\# paredulesshs	-13	3	-4	0
\#\# pareduma	-1	2	0	1
\#\# pareduphd	-2	3	-1	0

(a) Describe a suitable probability model, in matrix form, to give a sample version of the linear model that has been fit above.
(b) Find the predicted math score for a student whose family has an ses value of -0.5 and whose parents' highest education level is high school (hs).
(c) How is the residual standard error calculated for this model? (Give a formula).

Q3. Comparing means using a linear model

Q3-1. Consider the following linear model for the mouse diet data that we have studied repeatedly

```
mice <- read.table("femaleMiceWeights.cSv",sep=",",header=TRUE)
head(mice)
```

\#\# Diet Bodyweight
\#\# 1 chow 21.51
\#\# 2 chow 28.14
\#\# 3 chow 24.04
\#\# 4 chow 23.45
\#\# 5 chow 23.68
\#\# 6 chow 19.79

```
lm_mice <- lm(Bodyweight~Diet,data=mice)
```

model.matrix(lm_mice)

```
## (Intercept) Diethf
## 1 1 0
```


(a) Write down the sample linear model fitted in lm_mice using the subscript format.
(b) Explain how to obtain estimates of the means of both treatment groups, and the difference between these means, from the coefficients of this sample linear model.

Q3-2. Let's consider the crabs data set we studied in lab. Recall that species (sp) is a factor with two levels, Blue (B) and Orange (0). We want to study the difference of frontal lobe size (FL) of two species.

```
library(MASS)
data(crabs)
head(crabs)
```

\#\#	sp	sex	index	FL	RW	CL	CW	BD
\#\#	B	M	1	8.1	6.7	16.1	19.0	7.0
\#\# 2	B	M	2	8.8	7.7	18.1	20.8	7.4
\#\#	3	B	M	3	9.2	7.8	19.0	22.4
\#\# 4	B	M	4	9.6	7.9	20.1	23.1	8.2
\#\#	B	B	M	5	9.8	8.0	20.3	23.0
\#\# 6	B	M	6	10.8	9.0	23.0	26.5	9.8

Consider the probability model $Y_{i}=\mu_{1} x_{B i}+\mu_{2} x_{O i}+\epsilon_{i}$ for $i=1, \ldots, 200 . Y_{i}$ is the frontal lobe size of crab i. $x_{B i}$ is 1 if crab i is of species Blue and 0 otherwise. Similarly, $x_{O i}$ is 1 if crab i is of species Orange and 0
otherwise. ϵ_{i} are i.i.d with mean 0 and variance σ^{2}. This model can be fitted to the crabs dataset in R using the $\operatorname{lm}()$ function. The resulting summary is provided below.

```
lm_crab <- lm(FL~sp-1, data=crabs)
summary(lm_crab)
```

```
##
## Call:
## lm(formula = FL ~ sp - 1, data = crabs)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.010 -2.410 0.390 2.169 7.244
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## spB 14.056 
## spO 17.110 0.315 54.31 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.15 on 198 degrees of freedom
## Multiple R-squared: 0.9615, Adjusted R-squared: 0.9611
## F-statistic: 2470 on 2 and 198 DF, p-value: < 2.2e-16
```

(a) Interpret the meaning of μ_{1} and μ_{2} in the above probability model?
(b) Build a 95% confidence interval for μ_{1} using normal approximation
(c) Recall in homework we know that the full estimated covariance matrix of $\hat{\boldsymbol{\mu}}=\left(\hat{\mu}_{1}, \hat{\mu}_{2}\right)$ can be found by

```
V <- summary(lm_crab)$cov.unscaled * summary(lm_crab)$s^2
V
## spB sp0
## spB 0.09923719 0.00000000
## spO 0.00000000 0.09923719
```

Use V and information provided in summary (lm_crab) to write down an expression that constructs a 95% confidence interval for $\mu_{1}-\mu_{2}$.

Q3-3. We analyze the following data on video game sales in North America. This dataset records sales (in millions of dollars) for 580 games within three genres (shooter, sports and action) from two publishers (Electronic Arts and Activision) with years of release from 2006 to 2010 inclusive, on ten different platforms. We consider the following analysis

```
vg <- read.table("vg_sales.txt") ; head(vg)
```

\#\#	Name	Platform Year	Genre	Publisher	Sales
\#\# 1	1 Call of Duty: Black Ops	X360 2010	Shooter	Activision	9.70
\#\# 2	2 Call of Duty: Black Ops	PS3 2010	Shooter	Activision	5.99
\#\# 3	3 Call of Duty: World at War	X360 2008	Shooter	Activision	4.81
\#\# 4	4 Call of Duty: World at War	PS3 2008	Shooter	Activision	2.73
\#\# 5	5 FIFA Soccer 11	PS3 2010	Sports	ronic Arts	0.61
\#\# 6	6 Madden NFL 07	PS2 2006	Sports	ronic Arts	3.63

```
lm_vg2 <- lm(Sales ~ Publisher-1, data = vg)
summary(lm_vg2)
##
## Call:
## lm(formula = Sales ~ Publisher - 1, data = vg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.4412 -0.3212 -0.2136 0.0464 9.2588
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## PublisherActivision 0.44124 0.05095 8.661 <2e-16 ***
## PublisherElectronic Arts 0.41361 0.04434 9.327 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8055 on 578 degrees of freedom
## Multiple R-squared: 0.2189, Adjusted R-squared: 0.2162
## F-statistic: 81 on 2 and 578 DF, p-value: < 2.2e-16
```

The fitted probability model is $Y_{i j}=\pi_{j}+\epsilon_{i j}$ where $j=1,2$ specifies the publisher (Electronic Arts and Activision, respectively), and i ranges over all the games for each publisher. As usual, $\epsilon_{i j}$ gives an independent $N[0, \sigma]$ error for game (i, j). Parameters in this probability model are estimated by least squares as follows:
(a) What do the coefficients in the summary above measure?
(b) Explain how to build a 95% confidence interval for Activision sales using a normal approximation. You can use the property that $\mathrm{P}[Z<1.96]=0.975$ when Z has a $N[0,1]$ distribution.

Q3-4. Recall the crabs dataset used in lab. Here, BD refers to the body depth of the crabs, and sp denotes the colour of the crabs, which is one of blue or orange.

```
library(MASS)
data(crabs)
head(crabs)
```

\#\#	sp	sex	index	FL	RW	CL	CW
\#\#	BD						
\#\#	B	B	M	1	8.1	6.7	16.1
\#	19.0	7.0					
\#	B	B	M	3	9.2	7.7	18.1
20.8	19.0	22.4	7.4				

```
## 4 B M < 4 9.6 7.9 20.1 23.1 8.2
## 5 B M 5 9.8 8.0 20.3 23.0 8.2
## 6 B M 6 10.8 9.0 23.0 26.5 9.8
crabs$mu1 <- (crabs$sp == "B")*1
crabs$mu2 <- (crabs$sp == "O")*1
crabs$mu3 <- 1
crabs$mu4 <- 1-crabs$mu1
crabs$mu_diff <- crabs$mu2
fit1 <- lm(BD ~ mu1+mu2-1, data = crabs)
fit2 <- lm(BD ~ mu3 + mu_diff - 1, data = crabs)
fit3 <- lm(BD ~ mu2, data = crabs)
fit4 <- lm(BD ~ 1-mu1, data = crabs)
fit5 <- lm(BD ~ mu4, data = crabs)
fit6 <- lm(BD~ mu1+mu2, data = crabs)
```

(a) Would any of the models (fit1 to fit6) give the same coefficients? If yes, list them.

Now consider the probability model $Y_{i}=\mu_{1} x_{B i}+\mu_{2} x_{O i}+\epsilon_{i}$, where $i=1, \ldots, 200$. Y_{i} models the body weight of observation $i . x_{B i}$ is 1 if $\mathrm{sp}=\mathrm{B}$ for observation i and 0 otherwise. Similarly, $x_{O i}$ is 1 if $\mathrm{sp}=0$ for observation i and 0 otherwise. $\epsilon_{1}, \ldots, \epsilon_{200}$ are i.i.d with mean 0 and variance σ^{2}. This model can be fitted to the crabs dataset in R using the $\operatorname{lm}()$ function. The resulting summary is provided below.

```
summary(fit1)
##
## Call:
## lm(formula = BD ~ mu1 + mu2 - 1, data = crabs)
##
## Residuals:
## Min 1Q Median 3Q Max
## -8.0780 -2.1830 0.0695 2.3170 7.4170
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## mu1 12.583 0.311 40.46 <2e-16 ***
## mu2 15.478 0.311 49.77 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.11 on 198 degrees of freedom
## Multiple R-squared: 0.9541, Adjusted R-squared: 0.9536
## F-statistic: }2057\mathrm{ on 2 and 198 DF, p-value: < 2.2e-16
```

(b) Interpret μ_{1} and μ_{2} in the above model?
(c) Recall from homework that the estimated covariance matrix of $\hat{\boldsymbol{\beta}}=\left(\hat{\mu}_{1}, \hat{\mu}_{2}\right)$ can be found by

```
V <- summary(fit1)$cov.unscaled * summary(fit1)$s^2; V
## mu1 mu2
## mu1 0.09671882 0.00000000
## mu2 0.00000000 0.09671882
```

Construct a 95% confidence interval for $\mu_{1}-\mu_{2}$ using normal approximation. Based on this, do we have sufficient evidence to conclude that $\mu_{1}=\mu_{2}$ at the 95% level?

Q4. Making and interpreting an F test
Q4-1. The following is an ANOVA analysis of the football field goal kicking data that we have seen repeatedly. Recall that Name is the name of the kicker, FGt is the field goal percentage for the kicker in that year, and FGtM1 is the percentage for that kicker in the previous year.

```
kickers <- read.table("FieldGoals2003to2006.csv",header=T,sep=",")
kickers[1:5,c("Name","Teamt","FGt", "FGtM1")]
```

\#\#	Name	Teamt	FGt	FGtM1
\#\# 1	Adam Vinatieri	NE	73.5	90.0
\#\# 2	Adam Vinatieri	NE 93.9	73.5	
\#\# 3 Adam Vinatieri	NE 80.0	93.9		
\#\# 4 Adam Vinatieri	IND 89.4	80.0		
\#\# 5	David Akers	PHI 82.7	88.2	

lm_kickers <- lm(FGt~FGtM1+Name,data=kickers)
anova(lm_kickers)
\#\# Analysis of Variance Table
\#\#
\#\# Response: FGt
\#\# Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
$\begin{array}{lllllll}\text { \#\# FGtM1 } & 1 & 87.2 & 87.199 & 2.2597 & 0.1383978\end{array}$
\#\# Name $\quad 182252.5125 .137 \quad 3.2429 \quad 0.0003858$ ***
\#\# Residuals 562161.038 .589
\#\# ---

(a) Write out the null and alternative hypotheses corresponding to the hypothesis test constructed in the Name row of the ANOVA table.
(b) Describe how this test is constructed, using formulas when appropriate. You may define a residual sum of squares in words, without giving an explicit formula.
(c) Interpret the outcome of this test.

Q4-2. Consider the birth weight data set we have seen in lab. For this question, we will look at columns bwt (birth weight), lwt (mother's weight), age (mother's age) and race (mother's race, 1 for white, 2 for black and 3 for other).

```
library(MASS)
data(birthwt)
```

```
head(birthwt)
```

\#\#	low	age	lwt	race	smoke ptl	ht				
\#\# 85	0	19	182	2	0	0	0	1	0	2523
\#\# 86	0	33	155	3	0	0	0	0	3	2551
\#\# 87	0	20	105	1	1	0	0	0	1	2557
\#\# 88	0	21	108	1	1	0	0	1	2	2594
\#\# 89	0	18	107	1	1	0	0	1	0	2600
\#\# 91	0	21	124	3	0	0	0	0	0	2622

We want to study the relationship between birthweight and race using an F test, while mother's weight and age are included as additional explanatory variables. Let the null hypothesis, H_{0}, be the probability model where birth weight is modeled to depend linearly on mother's weight and age. Let H_{a} be the probability model where H_{0} is extended to include race as a factor, as fitted in R by

```
lm_bw <- lm(bwt ~ lwt + age +factor(race), data = birthwt)
```

The results from summary (lm_bw) and anova(lm_bw) are as follows

```
summary(lm_bw)
##
## Call:
## lm(formula = bwt ~ lwt + age + factor(race), data = birthwt)
##
## Residuals:
### Min 
##
## Coefficients:
## Estimate Std. Error t value Pr}(>|t|
## (Intercept) 2461.147 314.722 7.820 3.97e-13 ***
## lwt 4.620 1.788 2.584 0.01054 *
## age 1.299 10.108 0.128 0.89789
## factor(race)2 -447.615 161.369 -2.774 0.00611 **
## factor(race)3 -239.357 115.189 -2.078 0.03910 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 704.9 on 184 degrees of freedom
## Multiple R-squared: 0.08536, Adjusted R-squared: 0.06548
## F-statistic: 4.293 on 4 and 184 DF, p-value: 0.00241
```

```
anova(lm_bw)
```

```
anova(lm_bw)
```

\#\# Analysis of Variance Table
\#\#
\#\# Response: bwt

\#\#	Df	Sum Sq Mean Sq F value	$\operatorname{Pr}(>F)$		
\#\# lwt	1	3448639	3448639	6.9398	$0.009148 * *$
\#\# age	1	334183	334183	0.6725	0.413247

```
## factor(race) 2 4750632 2375316 4.7799 0.009467 **
## Residuals 184 91436202 496936
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

(a) Write out the null and alternative hypotheses of the F test by completely specifying the probability models.
(b) Interpret the results in anova(lm_gpa). Specifically, read the sample test statistic from R output, give the distribution of the model-generated test statistic under H_{0}, and explain how the resulting p-value is calculated and interpreted. Your answer should givie relevant formulas, though you may define a residual sum of squares in words without explicitly saying how it is constructed.

Q4-3. We analyze the following data on video game sales in North America. This dataset records sales (in millions of dollars) for 580 games within three genres (shooter, sports and action) from two publishers (Electronic Arts and Activision) with years of release from 2006 to 2010 inclusive, on ten different platforms. We are interested in considering whether there is a significant pattern in the sales of different game genres, which leads us to carry out the following analysis:

```
vg <- read.table("vg_sales.txt") ; head(vg)
\begin{tabular}{lrrrrrrr} 
\#\# & & Name Platform & Year & Genre & Publisher & Sales \\
\#\# 1 & Call of Duty: Black Ops & X360 2010 & Shooter & Activision & 9.70 \\
\#\# 2 & Call of Duty: Black Ops & PS3 2010 & Shooter & Activision & 5.99 \\
\#\# 3 Call of Duty: World at War & X360 2008 & Shooter & Activision & 4.81 \\
\#\# 4 Call of Duty: World at War & PS3 2008 & Shooter & Activision & 2.73 \\
\#\# 5 & FIFA Soccer 11 & PS3 2010 & Sports Electronic Arts & 0.61 \\
\#\# 6 & Madden NFL 07 & PS2 2006 & Sports Electronic Arts & 3.63
\end{tabular}
```

```
lm_vg3 <- lm(Sales ~ Publisher + Genre, data = vg)
```

lm_vg3 <- lm(Sales ~ Publisher + Genre, data = vg)
anova(lm_vg3)

```
```


Analysis of Variance Table

Response: Sales

Df Sum Sq Mean Sq F value Pr(>F)

Publisher 1 0.11 0.1086 0.1777 0.6735

Genre 2 22.98 11.4899 18.7971 1.236e-08 ***

Residuals 576 352.08 0.6113

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```
(a) Let \(\pi_{j}\) be a factor for publisher, where \(j=1,2\) specifies Electronic Arts and Activision, respectively. Let \(\gamma_{k}\) be a factor for genre, where \(k=1,2,3\) specifies shooter, sports and action respectively. Let \(y_{i j k}\) be the sales for the \(i\) th game having publisher \(j\) and genre \(k\), and let \(Y_{i j k}\) be a probability model for \(y_{i j k}\). Using this notation, complete the explicit specification of a the null and alternative hypothesis for an F-test that evaluates whether there is a statistically significant difference between sales of different genres.
(b) Explain how the test statistic and p-value are constructed for this F-test, giving relevant formulas. You may define a residual sum of squares in words, without writing out an explicit formula for this.
(c) Interpret the results of this test, as given in the above ANOVA table.

Q4-4. Recall the nels88 dataset from lab. These data are a subset of the National Education Longitudinal Study of 1988 which examined schoolchildren's performance on a math test score in 8 th grade. ses is the socioeconomic status of parents and paredu is the parents highest level of education achieved (less than high school, high school, college, BA, MA, PhD). race determines the race of each student which is one of White, Black, Asian or Hispanic.
```

library(faraway)
data(nels88)
head(nels88)

```
\begin{tabular}{lrrrr} 
\#\# & sex & race & ses & paredu \\
\#\# 1 & Female \\
\#\# 2 & Male White -0.13 & hs & 48 \\
\#\# 3 & Male White -0.39 & hs & 48 \\
\#\# 4 & Male White -0.80 & hs & 53 \\
\#\# 5 Female White -0.74 & hs & 42 \\
\#\# 6 & Female White -0.58 & hs & 43 \\
hs & 57
\end{tabular}
```

fit <- lm(math ~ ses + paredu + race, data = nels88)
summary(fit)

```

\section*{\#\#}
\#\# Call:
\#\# lm(formula \(=\) math \(\sim\) ses + paredu + race, data \(=\) nels88)
\#\#
\#\# Residuals:
\#\# Min 1Q Median 3Q Max
\(\begin{array}{llllll}\# \# & -21.4072 & -5.8638 & -0.0508 & 5.7936 & 23.5985\end{array}\)
\#\#
\#\# Coefficients:
\#\# Estimate Std. Error t value \(\operatorname{Pr}(>|t|)\)
\#\# (Intercept) \(58.7446 \quad 1.8514 \quad 31.730<2 \mathrm{e}-16\) ***
\#\# ses \(2.5560 \quad 1.3663 \quad 1.8710 .062550\).
\#\# pareducollege -7.4794 2.1637 -3.457 0.000642 ***
\#\# pareduhs -12.1449 \(2.6950-4.5071 .01 \mathrm{e}-05\) ***
\#\# paredulesshs -13.1456 3.3711 -3.899 0.000124 ***
\#\# pareduma \(\quad-0.8131 \quad 2.2451 \quad-0.3620 .717532\)
\#\# pareduphd \(-1.9900 \quad 2.5241 \quad-0.7880 .431208\)
\(\begin{array}{lllll}\text { \#\# raceAsian } & 1.6054 \quad 3.1137 & 0.516 & 0.606583\end{array}\)
\#\# raceBlack -2.4562 \(\quad 1.6192-1.5170 .130553\)
\#\# raceHispanic \(0.8097 \quad 1.9795 \quad 0.4090 .682859\)
\#\# ---
\#\# Signif. codes: \(0{ }^{\prime * * * '} 0.001\) '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\#\#
\#\# Residual standard error: 8.448 on 250 degrees of freedom
\#\# Multiple R-squared: 0.4445, Adjusted R-squared: 0.4245
\#\# F-statistic: 22.23 on 9 and 250 DF, p-value: < \(2.2 \mathrm{e}-16\)
```

anova(fit)

Analysis of Variance Table

Response: math

Df Sum Sq Mean Sq F value Pr (>F)

ses 1 12391.4 12391.4 173.6329 < 2.2e-16 ***

paredu 5 1642.4 328.5 4.6029 0.000491 ***

race }\begin{array}{llllll}{\mathrm{ \# 241.3 80.4 1.1272 }}\&{0.338619}

Residuals 250 17841.4 71.4

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

```

Suppose we are interested in finding whether the race of the student is associated with their math score, after controlling for the other variables.
(a) Write out the null and alternative hypothesis for carrying out the above analysis. (Describe all parameters clearly)
(b) What test would you carry out? Clearly explains how the test is constructed, giving relevant formulas. You may define a residual sum of squares in words, without giving an explicit formula.
(c) Report on the conclusions of your test based on the R output provided.

License: This material is provided under an MIT license```

