
Homework 6 (Math/Stats 425, Winter 2013)

Due Tuesday March 19, in class

1. The lifetime in years of a laptop battery is a random variable having a probability density
function given by

f(x) = c xe−x/2

for x ≥ 0, with c being a constant. Compute the expected lifetime of the battery.

Solution:

Let X denote the lifetime of. Then∫ ∞

0
xe−x/2dx = −2xe−x/2

∣∣∣∞
0

+
∫ ∞

0
2e−x/2dx

= 2

c =
1
2

2EX =
∫ ∞

0
xxe−x/2dx

= −2x2e−x/2
∣∣∣∞
0

+
∫ ∞

0
4xe−x/2dx

= 8
EX = 4

using integration by parts.

2. Trains headed for destination A arrive at the train station at 15-minute intervals starting at 7
a.m., whereas tranins headed for destination B arrive at 15-minute intervals starting at 7:05
a.m.

(a) If a passenger arrives at the station at a time uniformly distributed between 7 a.m. and
8 a.m. and then gets on the first train that arrives, what proportion of the time does this
passenger go to destination A?

(b) What if the passenger arrives at a time uniformly distributed between 7:10 and 8:10?

Solution:

(a) Let X denote the time at which the passenger arrives. X ∼ U(0, 60)

P (goes toA)
= P (5 < X < 15) + P (20 < X < 30) + P (35 < X < 45) + P (50 < X < 60)

=
40
60

=
2
3
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(b) Let X denote the time at which the passenger arrives. X ∼ U(10, 70)

P (goes toA)
= P (10 < X < 15) + P (20 < X < 30) + P (35 < X < 45) + P (50 < X < 60) + P (65 < X < 70)

=
40
60

=
2
3

3. Define a collection of events {Ea, 0 < a < 1} having the property that P(Ea) = 1 for all a but
P (

⋂
a Ea) = 0. Explain why this could not happen for a finite or countably infinite collection

of events.

Hint: One way to proceed is to let X be uniform over (0,1) and define each Ea in terms of X.

Solution:

Let X ∼ U(0, 1) and Ea = {X 6= a}.
Thus, ∀a ∈ (0, 1), P (Ea) = P (X 6= a) = 1. But P (

⋂
a Ea) = P (∅) = 0

4. Let f(x) be the density of a normal random variable, i.e.,

f(x) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
. (1)

(a) Show that µ − σ and µ + σ are points of inflection of this function. That is, show that
d2

dx2 f(x) = 0 when x = µ + σ or x = µ− σ.

(b) Sketch f(x), showing the ordinate values at x = µ − σ, x = µ and x = µ + σ and being
careful to represent the property established in part (a).

Solution:

Let f(x) denote the density function of a normal random variable with mean µ and variance
σ2. Then

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2

Its first order derivative is

f ′(x) = (−2× 1
2σ2

(x− µ))
1√
2πσ

e−
(x−µ)2

2σ2 = −(x− µ)√
2πσ3

e−
(x−µ)2

2σ2

And the second derivative is

f ′′(x) = − 1√
2πσ3

e−
(x−µ)2

2σ2 (1− (x− µ)2

σ2
)

So, we can easily check that f ′′(x) = 0 when x = µ− σ or x = µ + σ.

5. Let X be a continuous random variable with density f(x). In class we showed that, for a
non-negative function g(x),

E[g(X)] =
∫ ∞

−∞
g(x)f(x) dx. (2)

Prove the more general result, that equation (2) holds without requiring g(x) ≥ 0. You may
use the method that we used in class, but you should not use the result we established (i.e.,
equation (2) for g(x) ≥ 0) without proof.
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Solution:

E[g(X)] = E[IAg(X)]− E[IAc(−g(X))]

=
∫ ∞

−∞
g(x)f(x)IA(x) dx

−
∫ ∞

−∞
−g(x)f(x)IAc(x) dx.

=
∫ ∞

−∞
g(x)f(x) dx.

where A = {x : g(x) ≥ 0} , Ac = {x : g(x) < 0} , and IA is the indicator fuuction of A, i.e.
IA(x) = 1 if x is in A and IA(x) = 0 if x is not in A . Note that we used the result we proved
in class, so you need to provide a proof for it, for example writing down the same proof we
did in class.

Recommended reading:
Sections 5.1–5.3 in Ross “A First Course in Probability,” 8th edition. Question 4 concerns the
normal distribution, but you do not have to know anything about this distribution other than the
density in equation (1) to do this question.
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