Homework 7 (Math/Stats 425, Winter 2013)

Due Tuesday April 9, in class

- 1. The annual rainfall (in inches) in a certain region is modeled as being normally distributed with $\mu = 40$ and $\sigma = 4$. According to this model, what is the probability that it will take over 10 years before a year occurs having rainfall above 50 inches? What assumptions are you making?
- 2. The number of years a new radio functions is exponentially distributed with parameter $\lambda = 1/8$. If Jones buys a used radio, what is the probability that it will be working after an additional 8 years? Comment on your assumptions.
- 3. Find the density function of $R = a \sin(\Theta)$, where a is a fixed constant and Θ is uniformly distributed on $(-\pi/2, \pi/2)$.

Note: such a random variable R arises in the theory of ballistics. If a projectile is fired from the origin at an angle α from the earth with speed ν , then the point R at which it returns to the earth can be expressed as $R = (\nu^2/g) \sin(2\alpha)$ where g is the gravitational constant.

- 4. Suppose that 3 balls are chosen successively, without replacement, from an urn containing 5 white balls and 8 red balls. Let X_i equal 1 if the *i*th ball drawn is white, and otherwise X_i equals 0. Write the joint probability mass function of
 - (a) X_1 and X_2
 - (b) X_1 , X_2 and X_3
 - (c) $X_1 + X_2$ and $X_1 + X_3$
- 5. The joint probability density function of X and Y is given by

$$f(x,y) = \frac{6}{7} \left(x^2 + \frac{xy}{2} \right) \quad 0 < x < 1, \ 0 < y < 2$$

- (a) Verify that this is indeed a valid joint density function.
- (b) Compute the marginal density function of X.
- (c) Find $\mathbb{P}(X > Y)$.
- (d) Find $\mathbb{P}(Y > 1/2 | X < 1/2)$.
- (e) Find $\mathbb{E}[X]$.
- (f) Find $\mathbb{E}[Y]$

Recommended reading:

Sections 5.4, 5.5, 5.7 and 6.1 in Ross "A First Course in Probability," 8th edition. This course will not include the material in Section 5.6.