Homework 7 (Math/Stats 425, Winter 2013)

Due Tuesday April 9, in class

1. The annual rainfall (in inches) in a certain region is modeled as being normally distributed with $\mu=40$ and $\sigma=4$. According to this model, what is the probability that it will take over 10 years before a year occurs having rainfall above 50 inches? What assumptions are you making?
Solution: Let X denote the annual rainfall, and E denote the event that it will take over 10 years starting from this year before a year occurs having a rain fall of over 50 inches. Then

$$
\begin{aligned}
P(X>50) & =1-P(X \leq 50) \\
& =1-\int_{-\infty}^{50} \frac{1}{\sqrt{2 \pi 4}} e^{-\frac{(x-40)^{2}}{32}} d x \\
& =1-\int_{-\infty}^{2.5} \frac{1}{\sqrt{2 \pi}} e^{-\frac{u^{2}}{2}} d u \\
& =1-\Phi(2.5) \\
& =1-0.9938 .
\end{aligned}
$$

Therefore,

$$
P(E)=\{1-(1-0.9938)\}^{10}=0.9397
$$

We are assuming that the annual rainfall is independent from year to year.
2. The number of years a new radio functions is exponentially distributed with parameter $\lambda=$ $1 / 8$. If Jones buys a used radio, what is the probability that it will be working after an additional 8 years? Comment on your assumptions.
Solution:

$$
\begin{aligned}
P(X>8+x \mid X>x) & =P(X>8) \\
& =\int_{8}^{\infty} \lambda e^{-\lambda x} d x \\
& =e^{-1}
\end{aligned}
$$

3. Find the density function of $R=a \sin (\Theta)$, where a is a fixed constant and Θ is uniformly distributed on $(-\pi / 2, \pi / 2)$.
Note: such a random variable R arises in the theory of ballistics. If a projectile is fired from the origin at an angle α from the earth with speed ν, then the point R at which it returns to the earth can be expressed as $R=\left(\nu^{2} / g\right) \sin (2 \alpha)$ where g is the gravitational constant.

Solution: First, calculate cdf of R.

$$
\begin{aligned}
F_{R}(r) & =P\{A \sin \Theta \leq r\} \\
& =P\left\{\sin \Theta \leq \frac{r}{A}\right\} \\
& =P\left\{\Theta \leq \arcsin \left(\frac{r}{A}\right)\right\} \\
& =\frac{\arcsin \left(\frac{r}{A}\right)+\frac{\pi}{2}}{\frac{\pi}{2}+\frac{\pi}{2}} \\
& =\frac{1}{\pi} \arcsin \left(\frac{r}{A}\right)+\frac{1}{2}
\end{aligned}
$$

By differentiating cdf, we get pdf,

$$
\begin{aligned}
f_{R}(r) & =\frac{d}{d r}\left(\frac{1}{\pi} \arcsin \left(\frac{r}{A}\right)+\frac{1}{2}\right) \\
& =\frac{1}{\pi} \frac{1}{\sqrt{1-\left(\frac{r}{A}\right)^{2}}} \frac{1}{A} \\
& =\frac{1}{\pi \sqrt{A^{2}-r^{2}}} \quad \text { for }-A \leq r \leq A
\end{aligned}
$$

4. Suppose that 3 balls are chosen successively, without replacement, from an urn containing 5 white balls and 8 red balls. Let X_{i} equal 1 if the i th ball drawn is white, and otherwise X_{i} equals 0 . Write the joint probability mass function of
(a) X_{1} and X_{2}
(b) X_{1}, X_{2} and X_{3}
(c) $X_{1}+X_{2}$ and $X_{1}+X_{3}$

Solution:
(a)

$$
\begin{aligned}
p(0,0) & =\frac{8}{13} \frac{7}{12}=\frac{14}{39} \\
p(0,1) & =\frac{8}{13} \frac{5}{12}=\frac{10}{39} \\
p(1,0) & =\frac{5}{13} \frac{8}{12}=\frac{10}{39} \\
p(1,1) & =\frac{5}{13} \frac{4}{12}=\frac{5}{39}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& p(0,0,0)=\frac{8}{13} \frac{7}{12} \frac{6}{11}=\frac{28}{143} \\
& p(0,0,1)=\frac{8}{13} \frac{7}{12} \frac{5}{11}=\frac{70}{429}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& p(0,1,0)=p(1,0,0)=\frac{70}{429} \\
& p(0,1,1)=\frac{8}{13} \frac{5}{12} \frac{4}{11}=\frac{40}{429}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& p(1,0,1)=p(1,1,0)=\frac{40}{429} \\
& p(1,1,1)=\frac{5}{13} \frac{4}{12} \frac{3}{11}=\frac{5}{143}
\end{aligned}
$$

(c)

$$
\begin{aligned}
p(0,0) & =\frac{28}{143} \\
p(0,1) & =\frac{70}{429} \\
p(0,2) & =0 \\
p(1,0) & =\frac{70}{429} \\
p(1,1) & =\frac{40}{429}+\frac{70}{429} \\
p(1,2) & =\frac{40}{429} \\
p(2,0) & =0 \\
p(2,1) & =\frac{40}{429} \\
p(2,2) & =\frac{5}{13} \frac{4}{12} \frac{3}{11}=\frac{5}{143}
\end{aligned}
$$

5. The joint probability density function of X and Y is given by

$$
f(x, y)=\frac{6}{7}\left(x^{2}+\frac{x y}{2}\right) \quad 0<x<1,0<y<2
$$

(a) Verify that this is indeed a valid joint density function.
(b) Compute the marginal density function of X.
(c) Find $\mathbb{P}(X>Y)$.
(d) Find $\mathbb{P}(Y>1 / 2 \mid X<1 / 2)$.
(e) Find $\mathbb{E}[X]$.
(f) Find $\mathbb{E}[Y]$

Solution:
(a)

$$
\int_{0}^{1} \int_{0}^{2} \frac{6}{7}\left(x^{2}+\frac{x y}{2}\right) d y d x=\int_{0}^{1} \frac{6}{7}\left(2 x^{2}+x\right) d x=1
$$

(b)

$$
f_{X}(x)=\int_{0}^{2} \frac{6}{7}\left(x^{2}+\frac{x y}{2}\right) d y=\frac{6}{7}\left(2 x^{2}+x\right)
$$

(c)

$$
\begin{aligned}
P(X>Y) & =\int_{0}^{1} \int_{0}^{x} \frac{6}{7}\left(x^{2}+\frac{x y}{2}\right) d y d x \\
& =\left.\frac{6}{7} \int_{0}^{1}\left(x^{2} y+\frac{1}{4} x y^{2}\right)\right|_{0} ^{x} d x \\
& =\frac{6}{7} \int_{0}^{1} \frac{5}{4} x^{3} d x=\frac{15}{56}
\end{aligned}
$$

(d)

$$
\begin{gathered}
P\left(X<\frac{1}{2}\right)=\int_{0}^{\frac{1}{2}} f_{X}(x) d x=\int_{0}^{\frac{1}{2}} \frac{6}{7}\left(2 x^{2}+x\right) d x=\left.\frac{6}{7}\left(\frac{2 x^{3}}{3}+\frac{x^{2}}{2}\right)\right|_{0} ^{\frac{1}{2}}=\frac{5}{28} \\
P\left(X<\frac{1}{2}, Y>\frac{1}{2}\right)=\int_{0}^{\frac{1}{2}} \int_{\frac{1}{2}}^{2} \frac{6}{7}\left(x^{2}+\frac{x y}{2}\right) d x d y=\frac{3}{56}+\frac{45}{28 \times 16}
\end{gathered}
$$

By the definition of conditional probability,

$$
\begin{aligned}
P\left(\left.Y>\frac{1}{2} \right\rvert\, X<\frac{1}{2}\right) & =\frac{P\left(X<\frac{1}{2}, Y>\frac{1}{2}\right)}{P\left(X>\frac{1}{2}\right)} \\
& =\frac{3}{56} \times \frac{28}{5}+\frac{48}{28 \times 16} \times \frac{5}{28} \\
& =\frac{69}{80}=0.8625
\end{aligned}
$$

(e)

$$
\begin{aligned}
E X & =\int_{0}^{1} x f_{X}(x) d x \\
& =\int_{0}^{1} x\left(\frac{12}{7} x^{2}+\frac{6}{7} x\right) d x \\
& =\frac{12}{7} \frac{x^{4}}{4}+\left.\frac{6}{7} \frac{x^{3}}{3}\right|_{0} ^{1} \\
& =\frac{5}{7}
\end{aligned}
$$

(f)

$$
\begin{aligned}
E Y & =\int_{0}^{2} \int_{0}^{1} y \frac{6}{7}\left(x^{2}+\frac{x y}{2}\right) d x d y \\
& =\frac{6}{7} \int_{0}^{1}\left(2 x^{2}+\frac{4}{3} x\right) d x \\
& =\left.\frac{6}{7}\left(\frac{2}{3} x^{3}+\frac{2}{3} x^{2}\right)\right|_{0} ^{1} \\
& =\frac{8}{7}
\end{aligned}
$$

Recommended reading:

Sections 5.4, 5.5, 5.7 and 6.1 in Ross "A First Course in Probability," 8th edition. This course will not include the material in Section 5.6.

