Homework 7 (Math/Stats 425, Winter 2013)
Due Tuesday April 9, in class

1. The annual rainfall (in inches) in a certain region is modeled as being normally distributed
with ¢ = 40 and 0 = 4. According to this model, what is the probability that it will take
over 10 years before a year occurs having rainfall above 50 inches? What assumptions are
you making?

Solution: Let X denote the annual rainfall, and E denote the event that it will take over 10
years starting from this year before a year occurs having a rain fall of over 50 inches. Then

P(X >50) = 1—P(X <50)
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Therefore,
P(E) = {1 — (1 -0.9938)}1° = 0.9397

We are assuming that the annual rainfall is independent from year to year.
2. The number of years a new radio functions is exponentially distributed with parameter A =

1/8. If Jones buys a used radio, what is the probability that it will be working after an
additional 8 years? Comment on your assumptions.

Solution:

P(X>8+z|X >z) = P(X>38)

= / e Mdx
8

3. Find the density function of R = asin(©), where a is a fixed constant and © is uniformly
distributed on (—m/2,7/2).

Note: such a random variable R arises in the theory of ballistics. If a projectile is fired from
the origin at an angle o from the earth with speed v, then the point R at which it returns to
the earth can be expressed as R = (v?/g) sin(2a)) where g is the gravitational constant.



Solution: First, calculate cdf of R.
Fr(r) = P{Asin® <r}
r
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= P{O< arcsz‘n(%)}
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By differentiating cdf, we get pdf,
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. Suppose that 3 balls are chosen successively, without replacement, from an urn containing 5
white balls and 8 red balls. Let X; equal 1 if the ¢th ball drawn is white, and otherwise X;
equals 0. Write the joint probability mass function of

(a) X1 and X5
(b) Xl, X2 and X3
(C) X7+ X9 and X7 + X3

Solution:

(a)

p(0,0) = %%:%
p(0,1) = %132:%
p(1,0) = %%:g
p(1,1) = %%:3%
(b)
p(0,0,0) = %%%:%
p(0,0,1) = %%%:%



Similarly,
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5. The joint probability density function of X and Y is given by
6
ﬂ@w:?(2+%q O<z<1,0<y<?2
(a) Verify that this is indeed a valid joint density function.
(b) Compute the marginal density function of X.
(c) Find P(X >Y).
(d) Find P(Y > 1/2| X < 1/2).
(e) Find E[X].
(f) Find E[Y]

Solution:

(a) 1 2 1
//6( 2+xy)dyd:v—/ §(2x2+x)d:ﬁ:1
o Jo 7 2 o 7



1 T
P(X>Y) = j/ 8 + yayda
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By the definition of conditional probability,
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Recommended reading:
Sections 5.4, 5.5, 5.7 and 6.1 in Ross “A First Course in Probability,” 8th edition. This course will
not include the material in Section 5.6.



