
Math/Stats 425

Introduction to Probability

1. Uncertainty and the
axioms of probability

• Processes in the real world are random if
outcomes cannot be predicted with certainty.

• Example: coin tossing, stock market prices,
weather prediction, genetics, games of chance,
industrial quality control, estimating a movie
rating based on previous customer preferences,
internet packages arriving at a router, etc.

• Humans have fairly poorly developed intuitions
about probabilities, so a formal mathematical
approach is necessary. It can lead to surprising
results in some simple problems.
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Example: The birthday problem

What is the chance that 2 or more people in a
room share a birthday?

# people 25 40 60 70

probability 0.57 0.891 0.994 0.999

Example: HIV testing

Suppose 99% of people with HIV test positive,
95% of people without HIV test negative, and
0.1% of people have HIV. What is the chance that
a person who tests positive actually has HIV?

Answer: ≈ 1
51 < 2%.
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Outcomes, Sample Spaces & Events

• A random process (or “experiment”) gives rise
to an outcome.

• The first task in specifying a mathematical
model for a random process is to define the
sample space, S, which is the set of all possible
outcomes.

Example 1. A coin can land heads or tails, so
we set S = {H,T}.
Note: this is a mathematical idealization. A coin
can also land on its edge, or roll away and get
lost. We simplify the problem, much as in
mechanics we might assume a planet is a point
mass, or a pulley has no friction.
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Example 2. Roll a die 3 times. If we take the
outcome to be a sequence of 3 numbers,

S = {111, 112, 113, . . . , 666},
the total number of outcomes is

#S =

Example 3. Roll a die 3 times. Taking the
outcome to be the sum of the 3 rolls,

S = {3, 4, 5, . . . , 18}
#S =

In different contexts, you can choose different
sample spaces for the same experiment.

Example 4. Toss a coin until heads appears:

S = {H, TH, TTH, TTTH, . . . }.
Here, #S = ∞, with S being countably infinite.

Example 5. Measure the lifetime of an LED
lightbulb:

S = [0,∞) = {t : 0 ≤ t < ∞}.
Here, S is uncountable.
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• An event, E, is a subset of S. The event E

occurs if the process produces an outcome in E.

• Events can be written in different ways. For
example, suppose we roll a die 3 times and take
as our sample space S = {111, 112, . . . , 666}. We
can define E to be the event that the sum is
even. Equivalently, we can write

E = {the sum of 3 dice is even} (1)
or

E = {112, 114, 116, 121, 123, 125, . . . , 666} (2)

• Note that (1) and (2) are only equivalent for
this choice of S.

• Now take F = {566, 656, 665, 666}. How could
you write F in words?
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Using set operations on events

• The complement Ec, sometimes written Ē, is
the set of outcomes that are not in E. We say
Ec is the event that E does not happen (happen
means the same thing as occur).

• The intersection E ∩ F , sometimes written
EF , is the event that E and F occur. Formally,
E ∩ F is the set of outcomes in both E and F .

• The union E ∪ F is the event that E or F

occurs. Formally, E ∪ F is the set of outcomes in
either E or F or both.
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Discussion Problem. A box contains 3
marbles, one red, one green, one blue. A marble is
drawn, then replaced, and then a second is drawn.

(i) Describe the sample space (both in words and
by listing outcomes). How large is it?

(ii) Let E = {a red marble is drawn at least once}
and F = {a blue marble is drawn at least once}.
Describe the events E ∩ F and E ∪ F , and list
their outcomes.
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More set notation

• E is a subset of F , written E ⊂ F or F ⊃ E, if
all outcomes in E are also in F . If E ⊂ F ,
occurrence of E implies the occurrence of F .

• The empty set ∅ is the set with no elements,
also known as the null event.

Example 1. If S = {H,T}, E = {H}, F = {T},
then E ∩ F = ∅.
Example 2. E ∩ Ec = ∅ for any event E.

• Events E and F are mutually exclusive, or
disjoint, if E ∩ F = ∅.
Example 3. The empty set is disjoint to itself,
since ∅ ∩ ∅ = ∅.
• E and F are identical if E occurs whenever F

occurs, and vice versa. We then write E = F .
Formally, E = F means E ⊂ F and F ⊂ E.
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Venn diagrams

• These are a good way to visualize relationships
between events, and to find simple identities.

Example. Using a Venn diagram, write E ∪ F as
a union of mutually exclusive events.
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Formal properties for set operations

• Commutative:
E ∪ F = F ∪ E,
E ∩ F = F ∩ E.

• Associative:
(E ∪ F ) ∪G = E ∪ (F ∪G),
(E ∩ F ) ∩G = E ∩ (F ∩G).

• Distributive:
(E ∪ F ) ∩G = (E ∩G) ∪ (F ∩G),
(E ∩ F ) ∪G = (E ∪G) ∩ (F ∪G).

• DeMorgan’s law:
(
⋃n

i=1 Ei)
c =

⋂n
i=1 Ec

i ,

(
⋂n

i=1 Ei)
c =

⋃n
i=1 Ec

i .
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“Long run” interpretation of probability

• Many random processes or experiments are
repeatable. We can then assign probabilities
empirically.

• Perform an experiment n times. Let n(E)
denote the number of times that E occurs. Then
the probability of E should satisfy

P(E) ≈ n(E)
n

, the proportion of time E occurs.

Example: coin tossing. We could say
P(H) = 1/2 since, in a large number of tosses,
the proportion of heads is ≈ 1/2.

• For non-repeatable events (e.g. the Dow Jones
index on 1/10/2013) we can imagine repetitions
(“parallel universes”).

• The long run view of probability has limited
practical use, as n is often not large. As
J. M. Keynes observed, “In the long run, we are
all dead.”
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Properties of “long run” probabilities

• Since 0 ≤ n(E) ≤ n, we have 0 ≤ n(E)
n

≤ 1.

• n(S) = n and so
n(S)

n
= 1.

• If E and F are disjoint events then
n(E ∪ F ) = n(E) + n(F ) and so

n(E ∪ F )
n

=
n(E)

n
+

n(F )
n

.

• Remarkably, if we require that
probabilities must satisfy these three
“long run” properties, we get a
mathematical foundation for the entire
theory of probability.
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The axioms of probability

Consider an experiment with sample space S.
Write P(E) for the probability of an event E. We
assume that P obeys the following axioms:

A1: For any event E, 0 ≤ P(E) ≤ 1

A2: P(S) = 1

A3: If E1, E2, . . . is a countably infinite sequence
of mutually exclusive events (i.e., Ei ∩ Ej = ∅
for all i 6= j) then P (

⋃∞
i=1 Ei) =

∑∞
i=1 P(Ei)

• All mathematical understanding of probability
is built on these three axioms.

“The theory of probability is the only
mathematical tool available to help map
the unknown and the uncontrollable. It is
fortunate that this tool, while tricky, is
extraordinarily powerful and convenient.”

Benoit Mandelbrot, The Fractal
Geometry of Nature (1977)
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Some Consequences of the Axioms

Proposition 1. P(∅) = 0

Proof:

Proposition 2. (A finite version of axiom A3)

If E1, . . . , En are mutually exclusive then

P (
⋃n

i=1 Ei) =
∑n

i=1 P(Ei) .

Proof:

14



Proposition 3. P(Ec) = 1− P(E)

Proof:

Proposition 4. If E ⊂ F , then P(E) ≤ P(F ).

Proof: by decomposing F as a disjoint union.
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Proposition 5. (Addition rule)

P(E ∪ F ) = P(E) + P(F )− P(EF )

Note: This is the general addition rule. If E and
F are mutually exclusive, then P(E ∩ F ) = 0 and
we recover Prop. 2.

Proof: by decomposition into a disjoint union.
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Discussion Problem. A randomly selected
student has a VISA card with probability 0.61, a
Mastercard with probability 0.24, and both with
probability 0.11. Find the chance that a random
student has neither VISA nor Mastercard.
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Proposition 6. (Addition rule for 3 events).

P(E ∪ F ∪G) = P(E) + P(F ) + P(G)

−P(E ∩ F )− P(F ∩G)− P(G ∩ E)

+P(E ∩ F ∩G)

Sketch proof:

How does this extend to P(E1 ∪ E2 ∪ · · · ∪ En)?
(Not required for this course; see Ross, p. 30,
Prop. 4.4.)
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The classical probability model

• By symmetry or other considerations, it may be
reasonable to suppose that each outcome in S is
equally likely.

• Suppose S = {s1, . . . , sN}. If outcomes are
equally likely then axiom A1 implies that

P({si}) = 1
N for i = 1, . . . , N .

• It follows that for any event E

P(E) =
number of outcomes in E

total number of outcomes in S
Why?

• Classical probability problems then become
problems of counting.
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Example. I roll two dice. What is the chance
that the sum will be 6?

Solution. Suppose that one die is red and the
other is black. Now take S to list pairs of
outcomes for the red and black die respectively, so
S = {11, 12, 13, . . . , 66}.

Note: the symmetry argument for the classical
probability model fails if we set S = {2, 3, . . . , 12}.
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